
pydwf
Release 1.1.19

Sidney Cadot

Oct 18, 2023

INTRODUCTION

1 Welcome to pydwf ! 3
1.1 Supported devices . 4
1.2 Dependencies . 4
1.3 Project hosting . 4
1.4 Installation using pip . 5
1.5 Documentation . 5
1.6 Examples . 5
1.7 Acknowledgements . 6

2 Overview of pydwf 7
2.1 A minimal example of pydwf usage . 8
2.2 The two main pydwf classes . 8

3 The DwfLibrary class and its attributes 11
3.1 The DwfLibrary class . 11

3.1.1 Using the DwfLibrary class . 11
3.1.2 DwfLibrary reference . 11

3.2 Device enumeration functionality . 14
3.2.1 Using the device enumeration functionality . 14
3.2.2 Alternatives to the device enumeration functionality . 15
3.2.3 DeviceEnumeration reference . 15

3.3 Device control functionality . 21
3.3.1 Using the device control functionality . 21
3.3.2 Alternatives to the device control functionality . 21
3.3.3 DeviceControl reference . 21

3.4 Signal processing functionality . 23
3.4.1 Using the signal processing functionality . 23
3.4.2 Spectrum reference . 23

4 The DwfDevice class and its attributes 27
4.1 The DwfDevice class . 27

4.1.1 Using the DwfDevice class . 27
4.1.2 DwfDevice reference . 28

4.2 Analog input instrument . 33
4.2.1 Using the analog input instrument . 33
4.2.2 The AnalogIn state machine . 34
4.2.3 AnalogIn instrument API overview . 35

Instrument control . 35
Status variables . 35
Status data retrieval . 35
Acquisition settings . 36
Channel count . 36
Channel configuration . 36
Instrument trigger configuration . 36

i

Force instrument trigger . 37
Trigger detector configuration . 37
Counter functionality . 37
Sampling clock configuration . 37

4.2.4 AnalogIn reference . 38
4.3 Analog output instrument . 60

4.3.1 Using the analog output instrument . 61
4.3.2 The AnalogOut channel state machine . 61
4.3.3 AnalogOut channel nodes . 62
4.3.4 AnalogOut instrument API overview . 63

Instrument control . 63
Channel count . 64
Per-channel state machine settings . 64
Per-channel trigger configuration . 64
Per-channel output settings . 65
Per-channel miscellaneous settings . 65
Node enumeration . 65
Node configuration . 65
Node data management . 66
Carrier configuration (obsolete) . 66
Carrier node data management (obsolete) . 66

4.3.5 AnalogOut reference . 66
4.4 Analog I/O . 88

4.4.1 Using the Analog I/O functionality . 88
4.4.2 AnalogIO channels and nodes . 89
4.4.3 AnalogIO reference . 90

4.5 Analog impedance measurements . 94
4.5.1 Using the analog impedance measurements . 95
4.5.2 AnalogImpedance reference . 95

4.6 Digital input instrument . 100
4.6.1 Using the digital input instrument . 100
4.6.2 The DigitalIn instrument state machine . 100
4.6.3 DigitalIn instrument API overview . 101

Instrument control . 101
Status variables . 102
Status data retrieval . 102
Acquisition timing settings . 102
Acquisition settings . 103
Instrument trigger configuration . 103
Trigger detector configuration . 103
Counter functionality . 104
Miscellaneous settings . 104

4.6.4 DigitalIn reference . 104
4.7 Digital output instrument . 116

4.7.1 Using the digital output instrument . 117
4.7.2 The DigitalOut instrument state machine . 117
4.7.3 DigitalOut instrument API overview . 118

Instrument control . 118
Channel count . 119
Instrument-level state machine settings . 119
Trigger configuration . 119
Output settings . 120
Output pattern timing definition . 120
Data playback . 120

4.7.4 DigitalOut reference . 120
4.8 Digital I/O . 131

4.8.1 Using the digital I/O functionality . 131
4.8.2 DigitalIO reference . 132

ii

4.9 UART protocol . 137
4.9.1 Using the UART protocol functionality . 137
4.9.2 ProtocolUART reference . 138

4.10 SPI protocol . 140
4.10.1 Using the SPI protocol functionality . 140
4.10.2 ProtocolSPI reference . 141

4.11 I2C protocol . 152
4.11.1 Using the I2C protocol functionality . 152
4.11.2 ProtocolI2C reference . 152

4.12 CAN protocol . 155
4.12.1 Using the CAN protocol functionality . 156
4.12.2 ProtocolCAN reference . 156

4.13 SWD protocol . 157
4.13.1 Using the SWD protocol functionality . 158
4.13.2 ProtocolSWD reference . 158

5 pydwf exceptions 161
5.1 Using the pydwf exceptions . 161
5.2 Error handling in the pydwf package . 161
5.3 Exceptions raised by the pydwf package . 161
5.4 pydwf exceptions reference . 162

6 pydwf enumeration types 163
6.1 Using the pydwf enumeration types . 163
6.2 pydwf enumeration classes reference . 165

7 pydwf utilities 183
7.1 Using the pydwf.utilities functionality . 183
7.2 pydwf.utilities.openDwfDevice function reference . 183

8 Using pydwf as a command line tool 187

9 Triggering explained 189
9.1 Trigger sources . 189
9.2 Trigger timing and precision . 190

10 Device parameters 191

11 Digilent Waveforms devices and their configurations 193
11.1 About device configurations . 193
11.2 An overview of Digilent Waveforms devices . 193

11.2.1 Electronics Explorer (legacy) . 193
11.2.2 Analog Discovery (legacy) . 194
11.2.3 Analog Discovery 2 . 194
11.2.4 Analog Discovery 3 . 194
11.2.5 Digital Discovery . 195
11.2.6 Analog Discovery Studio . 195
11.2.7 DPS3340 Discovery USB power supply . 195
11.2.8 Analog Discovery Pro 3x50 . 195
11.2.9 Analog Discovery Pro 5250 . 196

12 About the DWF C Library 197
12.1 Accessing the DWF library from Python . 197
12.2 Overview of the C API . 197
12.3 Error handling in the C API . 198

13 Example scripts 199

Index 203

iii

iv

pydwf, Release 1.1.19

Warning: Important Notice

Following Digilent’s decision in October 2023 to require creation of a login account to download the Waveforms
software and the accompanying library that is needed to use their measurement devices, I decided to suspend
my work on pydwf indefinitely. There will be no support for new features, no bug fixes, and no more user
support from me either via Digilent’s user forum or via other channels.

The primary reason for this is that I consider it unethical to sell a hardware device that requires accompanying
software downloads if those software downloads require a mandatory login account, given that account creation
(1) requires mandatory acceptance of Terms and Conditions that were not part of the original hardware sale;
and (2) requires the user to register personally identifiable data.

I realize that these kinds of unsavory practices are pervasive in the brave new world of modern technology, but
my motivation to add value for such devices in my free time is precisely zero.

So for the time being (and probably forever, since I don’t expect Digilent to reverse course), version 1.1.19 will
be the last pydwf release. It is essentially identical to version 1.1.18, with this notice prominently added.

Digilent used to be a pretty cool engineering-first company, providing very nice FPGA development boards
and their excellent-value Analog Discovery devices. Unfortunately, their original customer oriented reputation
is rapidly deteriorating by adopting customer-unfriendly practices, probably as a result of their acquisition by
National Instruments back in 2013. It is all very unfortunate.

Winding down pydwf

• I have taken the Github repository private on 18 October 2023 to prevent uncoordinated forks.

• I am considering what to do with the existing pydwf packages on PyPI and the documentation on
ReadTheDocs. For now they will remain, but at some point in the future I may remove them.

Given all this, if you are considering using pydwf for new projects: I’d advice against it.

If you have a dependency on pydwf, this may be a good time to consider ways to cut that dependency.

I apologise for the inconvenience.

INTRODUCTION 1

pydwf, Release 1.1.19

2 INTRODUCTION

CHAPTER

ONE

WELCOME TO PYDWF !

Warning: Important Notice

Following Digilent’s decision in October 2023 to require creation of a login account to download the Waveforms
software and the accompanying library that is needed to use their measurement devices, I decided to suspend
my work on pydwf indefinitely. There will be no support for new features, no bug fixes, and no more user
support from me either via Digilent’s user forum or via other channels.

The primary reason for this is that I consider it unethical to sell a hardware device that requires accompanying
software downloads if those software downloads require a mandatory login account, given that account creation
(1) requires mandatory acceptance of Terms and Conditions that were not part of the original hardware sale;
and (2) requires the user to register personally identifiable data.

I realize that these kinds of unsavory practices are pervasive in the brave new world of modern technology, but
my motivation to add value for such devices in my free time is precisely zero.

So for the time being (and probably forever, since I don’t expect Digilent to reverse course), version 1.1.19 will
be the last pydwf release. It is essentially identical to version 1.1.18, with this notice prominently added.

Digilent used to be a pretty cool engineering-first company, providing very nice FPGA development boards
and their excellent-value Analog Discovery devices. Unfortunately, their original customer oriented reputation
is rapidly deteriorating by adopting customer-unfriendly practices, probably as a result of their acquisition by
National Instruments back in 2013. It is all very unfortunate.

Winding down pydwf

• I have taken the Github repository private on 18 October 2023 to prevent uncoordinated forks.

• I am considering what to do with the existing pydwf packages on PyPI and the documentation on
ReadTheDocs. For now they will remain, but at some point in the future I may remove them.

Given all this, if you are considering using pydwf for new projects: I’d advice against it.

If you have a dependency on pydwf, this may be a good time to consider ways to cut that dependency.

I apologise for the inconvenience.

This is the documentation of pydwf, a Python package to control the Digilent Waveforms lineup of electronic test
and measurement devices made by Digilent.

It wraps all functions of libdwf, the low-level C library provided by Digilent, in an easy-to-use, class-based Python
API. Like the C library, the pydwf package supports Windows, Linux (Intel and ARM), and macOS.

The DWF library can be downloaded and installed from Digilent’s website.

The current release of pydwf is version 1.1.19. It is based on version 3.20.1 of libdwf, but it should also work with
other versions.

The pydwf package comes with documentation and a number of ready-to-run examples that demonstrate how pydwf
can be used to perform common and not-so-common tasks.

3

https://digilent.com/

pydwf, Release 1.1.19

A command-line tool is provided that can be used, among other things, to list the available Digilent Waveforms
devices and their configurations.

This section contains information about the project. Readers who want to learn how to use pydwf are referred to
the API documentation.

1.1 Supported devices

The following devices can be controlled using pydwf :

• Electronics Explorer (legacy)

• Analog Discovery (legacy)

• Analog Discovery 2

• Analog Discovery 3

• Digital Discovery

• Analog Discovery Studio

• DPS3340 Discovery USB power supply

• Analog Discovery Pro 3x50 (3250 and 3450 models)

• Analog Discovery Pro 5250 (a National Instruments VB-8012 rebranded as a Digilent device; Windows
only)

The pydwf package has been extensively tested with the Analog Discovery 2, Digital Discovery, and ADP3450
devices. It should also work with the other devices listed, but these haven’t been tested. If you have such a device
and encounter problems, please report an issue on the GitHub issue tracker.

1.2 Dependencies

The pydwf package requires Python 3.6 or higher.

In order for pydwf to work, recent versions of the Digilent Adept and Digilent Waveforms packages must be in-
stalled. These provide the C libraries that pydwf uses to interact with devices. Generally speaking, if the Waveforms
GUI application provided by Digilent works on your system, you’re good to go.

pydwf depends on the numpy package to handle the considerable amount of data transferred between the PC and
Digilent Waveforms devices when performing high-speed signal generation or capture operations.

Some of the examples depend on the matplotlib package, but pydwf itself will work without it.

1.3 Project hosting

The project repository and issue tracker are hosted on GitHub:

https://github.com/sidneycadot/pydwf/

4 Chapter 1. Welcome to pydwf !

https://digilent.com/reference/test-and-measurement/electronics-explorer/start
https://digilent.com/reference/test-and-measurement/analog-discovery/start
https://digilent.com/reference/test-and-measurement/analog-discovery-2/start
https://digilent.com/reference/test-and-measurement/analog-discovery-3/start
https://digilent.com/reference/test-and-measurement/digital-discovery/start
https://digilent.com/reference/test-and-measurement/analog-discovery-studio/start
https://digilent.com/reference/test-and-measurement/discovery-power-supply-3340/start
https://digilent.com/reference/test-and-measurement/analog-discovery-pro-3x50/start
https://digilent.com/reference/test-and-measurement/analog-discovery-pro-5250/start
https://github.com/sidneycadot/pydwf/issues
https://numpy.org/
https://matplotlib.org/
https://github.com/
https://github.com/sidneycadot/pydwf/

pydwf, Release 1.1.19

1.4 Installation using pip

The installable package is hosted on PyPI:

https://pypi.org/project/pydwf/

This allows installation using the standard pip (or pip3) tool:

pip install pydwf

After installing pydwf, the following command will show the version of pydwf and the underlying DWF library:

python -m pydwf version

The following command will list all Digilent Waveforms devices connected to the system and, for each of them,
list the supported configurations:

python -m pydwf list -c

1.5 Documentation

The project documentation is hosted on Read The Docs. The latest version can be reached via the following link:

https://pydwf.readthedocs.io/en/latest/

If desired, the documentation can also be installed locally after installing the package by executing the following
command:

python -m pydwf extract-html-docs

This will create a local directory called pydwf-docs-html containing the project documentation in HTML format.

Alternatively, a PDF version of the manual can be extracted as well:

python -m pydwf extract-pdf-manual

1.6 Examples

The Python examples can be installed locally after installing the pydwf package by executing the following com-
mand:

python -m pydwf extract-examples

This will create a local directory called pydwf-examples containing the Python examples that demonstrate many of
the capabilities of the Digilent Waveforms devices and pydwf.

These examples are intended as a useful starting point for your own Python scripts. See the examples overview for
more information.

1.4. Installation using pip 5

https://pypi.org/
https://pypi.org/project/pydwf/
https://readthedocs.org/
https://pydwf.readthedocs.io/en/latest/

pydwf, Release 1.1.19

1.7 Acknowledgements

Many thanks to Digilent for making the awesome Waveforms devices, and to provide not only the very capable
Waveforms GUI software, but also the cross-platform SDK on which pydwf is based. Great work!

My company Jigsaw B.V. supported the effort to make pydwf. If you need any kind of high-tech software (with
or without Digilent Waveforms devices), and you’re somewhat in the vicinity of Delft, The Netherlands, give us a
call.

Thanks to my longtime friend Pepijn for proof-reading the documentation and providing his perspective on several
issues that came up while implementing pydwf. The package is a lot better because of your help.

Lastly, thanks to Petra for your patience with having all kinds of electronics equipment in the living room while
developing this package (and before, and after, . . .). You may not share my enthusiasm for this particular hobby,
but I am very fortunate that you are at least enthusiastic about my enthusiasm, if that makes sense.

— SC

6 Chapter 1. Welcome to pydwf !

https://www.jigsaw.nl/
https://jigsaw.nl/#Contact
https://jigsaw.nl/#Contact

CHAPTER

TWO

OVERVIEW OF PYDWF

Warning: Important Notice

Following Digilent’s decision in October 2023 to require creation of a login account to download the Waveforms
software and the accompanying library that is needed to use their measurement devices, I decided to suspend
my work on pydwf indefinitely. There will be no support for new features, no bug fixes, and no more user
support from me either via Digilent’s user forum or via other channels.

The primary reason for this is that I consider it unethical to sell a hardware device that requires accompanying
software downloads if those software downloads require a mandatory login account, given that account creation
(1) requires mandatory acceptance of Terms and Conditions that were not part of the original hardware sale;
and (2) requires the user to register personally identifiable data.

I realize that these kinds of unsavory practices are pervasive in the brave new world of modern technology, but
my motivation to add value for such devices in my free time is precisely zero.

So for the time being (and probably forever, since I don’t expect Digilent to reverse course), version 1.1.19 will
be the last pydwf release. It is essentially identical to version 1.1.18, with this notice prominently added.

Digilent used to be a pretty cool engineering-first company, providing very nice FPGA development boards
and their excellent-value Analog Discovery devices. Unfortunately, their original customer oriented reputation
is rapidly deteriorating by adopting customer-unfriendly practices, probably as a result of their acquisition by
National Instruments back in 2013. It is all very unfortunate.

Winding down pydwf

• I have taken the Github repository private on 18 October 2023 to prevent uncoordinated forks.

• I am considering what to do with the existing pydwf packages on PyPI and the documentation on
ReadTheDocs. For now they will remain, but at some point in the future I may remove them.

Given all this, if you are considering using pydwf for new projects: I’d advice against it.

If you have a dependency on pydwf, this may be a good time to consider ways to cut that dependency.

I apologise for the inconvenience.

All core pydwf functionality is made available for import from the top-level pydwf package:

• the DwfLibrary class, which is the starting point for all pydwf functionality;

• the PyDwfError and DwfLibraryError exceptions;

• the enumeration types that are used for parameters and result values of pydwf methods.

A small number of convenience functions and types have been implemented on top of the core pydwf package to
simplify often-recurring tasks. These can be found in the pydwf.utilities package.

7

pydwf, Release 1.1.19

2.1 A minimal example of pydwf usage

In practice, Python scripts that use pydwf will deal almost exclusively with just two classes: DwfLibrary and
DwfDevice.

The following is a minimal example of using pydwf that uses both of these classes to produce a 1 kHz tone on the
first analog output channel:

"""A minimal, self-contained example of using pydwf."""

from pydwf import DwfLibrary, DwfAnalogOutNode, DwfAnalogOutFunction
from pydwf.utilities import openDwfDevice

dwf = DwfLibrary()

with openDwfDevice(dwf) as device:

CH1 = 0 # Analog-out channel numbering starts at zero.
node = DwfAnalogOutNode.Carrier

device.analogOut.reset(CH1)

device.analogOut.nodeEnableSet(CH1, node, True)
device.analogOut.nodeFunctionSet(CH1, node, DwfAnalogOutFunction.Sine)
device.analogOut.nodeFrequencySet(CH1, node, 1000.0)

Start the channel.
device.analogOut.configure(CH1, True)

input("Producing a 1 kHz tone on CH1. Press Enter to quit ...")

With this example in mind, we can introduce the all-important DwfLibrary and DwfDevice classes.

2.2 The two main pydwf classes

As a pydwf user, you will interact directly with two classes: DwfLibrary and DwfDevice. We shortly summarize
what they do here. They each have their own more comprehensive sections later on.

The DwfLibrary class

The DwfLibrary class represents the loaded Digilent Waveforms shared library itself, and provides methods that
are not specific to a particular previously opened device. Examples include querying the library version, enumer-
ation of devices, and opening a specific device for use.

Typically, a script will instantiate a single DwfLibrary and use that instance to open a specific Digilent Waveforms
device, yielding a DwfDevice instance that can be used for the task at hand. This is also what happens in the
example shown above.

A DwfLibrary instance provides a small number of top-level methods. It also provides some attributes that provide
access to further functionality:

• deviceEnum provides device enumeration functionality;

• deviceControl provides functionality to open a single device and to close all previously opened devices;

• spectrum provides functionality for signal processing.

8 Chapter 2. Overview of pydwf

pydwf, Release 1.1.19

In most programs, the DwfLibrary class is only used to open a device for use, optionally selecting a specific
device configuration. Since this is such an often-occurring operation, pydwf provides the pydwf.utilities.
openDwfDevice() convenience function that handles several practical use-cases, such as opening a specific device
by its serial number, and/or selecting a device configuration that maximizes the buffer size for a certain instrument.

A comprehensive description of the DwfLibrary class and its attributes can be found here.

The DwfDevice class

The DwfDevice class represents a specific Digilent Waveforms device, such as an Analog Discovery 2 or a Digital
Discovery, connected to the computer.

Instances of DwfDevice are obtained either by calling on of the low-level DeviceControl.open() or
DeviceControl.openEx() methods, or by calling the higher-level, more powerful pydwf.utilities.
openDwfDevice() convenience function.

The DwfDevice class provides several miscellaneous methods, but the bulk of its functionality is accessible via one
of the attributes listed below:

• analogIn provides a multi-channel oscilloscope;

• analogOut provides a multi-channel analog signal generator;

• analogIO provides voltage, current, and temperature monitoring and control;

• analogImpedance provides measurement of impedance and other quantities;

• digitalIn provides a multi-channel digital logic analyzer;

• digitalOut provides a multi-channel digital pattern generator;

• digitalIO provides static digital I/O functionality;

• protocol.uart provides UART protocol configuration, send, and receive functionality;

• protocol.spi provides SPI protocol configuration, send, and receive functionality;

• protocol.i2c provides I2C protocol configuration, send, and receive functionality;

• protocol.can provides CAN protocol configuration, send, and receive functionality;

• protocol.swd provides SWD protocol configuration, send, and receive functionality.

After use, a Python script should close() the DwfDevice. Alternatively, the DwfDevice can act as a context
manager for itself, to make sure it is closed whenever the containing with statement ends.

A comprehensive description of the DwfDevice class and its attributes can be found here.

2.2. The two main pydwf classes 9

pydwf, Release 1.1.19

10 Chapter 2. Overview of pydwf

CHAPTER

THREE

THE DWFLIBRARY CLASS AND ITS ATTRIBUTES

This section discusses the DwfLibrary class and the three attributes that provide access to most of its functionality.

3.1 The DwfLibrary class

The DwfLibrary class is the entry point to all pydwf functionality. Most importantly, it is needed to obtain DwfDe-
vice instances.

3.1.1 Using the DwfLibrary class

The DwfLibrary class is defined in the pydwf.core.dwf_library module. The top-level pydwf package imports it
from that module to make it available to user scripts. To use the DwfLibrary class, you should import it from the
top-level pydwf package and create an instance:

from pydwf import DwfLibrary

dwf = DwfLibrary()

print("DWF library version:", dwf.getVersion())

After instantiating a DwfLibrary, you can use the handful of methods the instance provides. These methods are
documented as part of the DwfLibrary class in the next section.

Three attributes are provided to access particular sub-APIs of a DwfLibrary instance:

• deviceEnum provides device enumeration functionality;

• deviceControl provides device control functionality;

• spectrum provides signal processing functionality.

In most programs, the DwfLibrary instance is only used for opening a DwfDevice, using either
one of the DeviceControl.open() or DeviceControl.openEx() methods, or the pydwf.utilities.
openDwfDevice() convenience function; the latter takes a DwfLibrary instance as a parameter.

3.1.2 DwfLibrary reference

class DwfLibrary

The DwfLibrary class provides access to miscellaneous library functionality through the handful of meth-
ods it provides, and to device enumeration, device control, and signal processing functionality via its
deviceEnum , deviceControl, and spectrum attributes.

11

pydwf, Release 1.1.19

DwfLibrary attributes

deviceEnum

Provides access to the device enumeration functionality.

Type
DeviceEnumeration

deviceControl

Provides access to the device control functionality.

Type
DeviceControl

spectrum

Provides access to the signal processing functionality.

Type
Spectrum

DwfLibrary methods

__init__(check_library_version: bool = False)→ None
Initialize a DwfLibrary instance.

A single DwfLibrary instance should be created by a user of pydwf to serve as an entry point to all
pydwf functionality.

When initializing a DwfLibrary, the shared library libdwf on top of which pydwf is built is loaded into
memory using Python’s standard ctypes module.

A version check can be enabled to make sure that the shared library version corresponds exactly to the
version that was used while developing and testing the current pydwf version (3.20.1), and an exception
is raised if a mismatch is detected. Enabling this flag is recommended for critical applications.

After passing the version check (if enabled), the functions provided by the shared library are type-
annotated. This means that calls into the shared library with incompatible parameter types will raise
an exception. This mechanism helps to catch many bugs while using pydwf.

As a last initialization step, the deviceEnum , deviceControl, and spectrum attributes are initial-
ized. They can be used by a user program to access the device enumeration, device control functionality,
and signal processing functionality.

Parameters
check_library_version (bool) – If True, the version number of the C library will
be checked against the version of the C library from which the type information used by
pydwf was derived. In case of a mismatch, an exception will be raised.

Raises
PyDwfError – The version check could not be performed due to an unexpected low-level
error while querying the shared library version, or a version mismatch was detected.

getLastError()→ DwfErrorCode
Retrieve the last error code in the calling process.

The error code is cleared when other API functions are called and is only set when an API function
fails during execution.

Note: When using pydwf there is no need to call this method directly, since low-level errors reported
by the C library are automatically converted to a DwfLibraryError exception, which includes both
the error code and the corresponding message.

12 Chapter 3. The DwfLibrary class and its attributes

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/functions.html#bool

pydwf, Release 1.1.19

Returns
The DWF error code of last API call.

Return type
DwfErrorCode

Raises
DwfLibraryError – the last error code cannot be retrieved.

getLastErrorMsg()→ str
Retrieve the last error message.

The error message is cleared when other API functions are called and is only set when an API function
fails during execution.

Note: When using pydwf there is no need to call this method directly, since low-level errors reported
by the C library are automatically converted to a DwfLibraryError exception, which includes both
the error code and the corresponding message.

Returns

The error message of the last API call.

The string may consist of multiple messages, separated by a newline character, that de-
scribe the events leading to the error.

Return type
str

Raises
DwfLibraryError – The last error message cannot be retrieved.

getVersion()→ str
Retrieve the library version string.

Returns
The version of the DWF C library, composed of major, minor, and build numbers (e.g.,
“3.20.1”).

Return type
str

Raises
DwfLibraryError – The library version string cannot be retrieved.

paramSet(device_parameter: DwfDeviceParameter, value: int)→ None
Configure a default device parameter value.

Device parameters are settings of a specific DwfDevice. Refer to the device parameters section for
more information.

This method sets a default device parameter value to be used for devices that are opened subsequently.

See also:

To set the parameter value of a specific DwfDevice, use the DwfDevice.paramSet method.

Warning: The device parameter values are not checked to make sure they correspond to a valid
value for the specific device parameter.

Parameters

3.1. The DwfLibrary class 13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

pydwf, Release 1.1.19

• device_parameter (DwfDeviceParameter) – The device parameter for which to
set the default value.

• value (int) – The default device parameter value.

Raises
DwfLibraryError – The device parameter value cannot be set.

paramGet(device_parameter: DwfDeviceParameter)→ int
Return a default device parameter value.

Device parameters are settings of a specific DwfDevice. Refer to the device parameters section for
more information.

This method retrieves device parameter values at the library level (i.e., not tied to a specific device).
They are used as default device parameter values for devices that are opened subsequently.

See also:

To get the parameter value of a specific DwfDevice, use the DwfDevice.paramGet method.

Parameters
device_parameter (DwfParameter) – The device parameter for which to get the value.

Returns
The retrieved device parameter value.

Return type
int

Raises
DwfLibraryError – The device parameter value cannot be retrieved.

3.2 Device enumeration functionality

The device enumeration functionality provides a way to enumerate accessible Digilent Waveforms devices, i.e.,
probe the USB bus and the network to find all Digilent Waveforms devices that can potentially be used.

The enumeration functionality also provides functionality to get basic information for all devices found, such as
the device type, hardware revision, and serial number.

Lastly, the enumeration functionality allows user programs to examine device configurations, which provide a way
to optimize the Digilent Waveforms device for a certain task by allocating resources such as buffer memory to
certain instruments.

3.2.1 Using the device enumeration functionality

To use the device enumeration functionality you first need to initialize a DwfLibrary instance. The device
enumeration functionality can then be accessed via its deviceEnum attribute, which is an instance of the
DeviceEnumeration class:

from pydwf import DwfLibrary

dwf = DwfLibrary()

Enumerate all Digilent Waveforms devices and return the count.
device_count = dwf.deviceEnum.enumerateDevices()

print("Number of Digilent Waveforms devices found:", device_count)

14 Chapter 3. The DwfLibrary class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

3.2.2 Alternatives to the device enumeration functionality

For most users, there is little reason to use the device enumeration API directly. Consider the following alternatives:

• From the command line, it is easy to obtain a list of all Digilent Waveforms devices and their configurations
like this:

python -m pydwf list -c

• For Python scripts that want to select a specific device by serial number, or want to select a specific device
configuration while opening the device to maximize the capabilities of a certain instrument (for example, to
open the device with the largest possible AnalogIn or AnalogOut sample buffer sizes), consider using the
pydwf.utilities.openDwfDevice() convenience function.

3.2.3 DeviceEnumeration reference

class DeviceEnumeration

The DeviceEnumeration class provides access to the device enumeration functionality of a DwfLibrary.

Attention: Users of pydwf should not create instances of this class directly.

It is instantiated during initialization of a DwfLibrary and subsequently assigned to its public
deviceEnum attribute for access by the user.

enumerateDevices(enum_filter: DwfEnumFilter | None = None)→ int
Build an internal list of available Digilent Waveforms devices and return the count of devices found.

This method must be called before using other DeviceEnumeration methods described below, because
they obtain information about the enumerated devices from the internal device list that is built by this
method.

Note: This method can take several seconds to complete.

Parameters
enum_filter (Optional[DwfEnumFilter]) – Specify which devices to enumerate. If
None, enumerate all devices.

Returns
The number of Digilent Waveforms devices detected.

Return type
int

Raises
DwfLibraryError – The Digilent Waveforms devices cannot be enumerated.

enumerateStart(enum_filter: DwfEnumFilter | None = None)→ None
Start device enumeration.

Note: This method is non-blocking (i.e., fast).

Note: This method was added in DWF version 3.17 to provide an alternative to the blocking behavior
of the enumerateDevices() method.

3.2. Device enumeration functionality 15

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

pydwf, Release 1.1.19

Parameters
enum_filter (Optional[DwfEnumFilter]) – Specify which devices to enumerate. If
None, enumerate all devices.

Returns
The number of Digilent Waveforms devices detected.

Return type
int

Raises
DwfLibraryError – The Digilent Waveforms devices cannot be enumerated.

enumerateStop()→ int
Stop device enumeration.

This should be called after a preceding enumerateStart() invocation.

A enumerateStart() call followed by a enumerateStop() call essentially performs the same func-
tion as a single enumerateDevices() call, and takes approximately the same amount of time.

The advantage of using the Start/Stop methods is that the application can do useful work while the
devices are being enumerated in a background thread.

Note: This method can take several seconds to complete.

Note: This method was added in DWF version 3.17.

Returns
The number of Digilent Waveforms devices detected.

Return type
int

Raises
DwfLibraryError – The Digilent Waveforms devices cannot be enumerated.

enumerateInfo(device_index: int, options: str)→ None
Get info of the current device.

It is not clear what this method does; the underlying DWF FDwfEnumInfo function is missing from the
documentation.

An inquiry about this was made on the Digilent forum but the reply did not go into sufficient detail on
the functionality provided.

Parameters

• device_index (int) – Zero-based index of the previously enumerated Digilent Wave-
forms device (see the enumerateDevices() method).

• options (str) – The function or format of this parameter is not known.

Todo: Figure out what this method does.

Note: This method was added in DWF version 3.17.

16 Chapter 3. The DwfLibrary class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://forum.digilentinc.com/topic/22281-installation-of-waveforms-on-linux-amd64-runs-into-dependency-problem/#comment-64663
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

pydwf, Release 1.1.19

Raises
DwfLibraryError – The operation could not be performed.

deviceType(device_index: int)→ Tuple[int, int]
Return the device ID and version (hardware revision) of the selected Digilent Waveforms device.

Note: This method returns the integer values as reported by the ‘FDwfEnumDeviceType()’ function
and does not cast them to the DwfDeviceID and DwfDeviceVersion enumeration types.

This is done to prevent unknown devices from raising an exception.

Parameters
device_index (int) – Zero-based index of the previously enumerated Digilent Wave-
forms device (see the enumerateDevices() method).

Returns
A tuple of the DwfDeviceID and DwfDeviceVersion integer values of the selected
Digilent Waveforms device.

Return type
Tuple[int, int]

Raises
DwfLibraryError – The device type and version cannot be retrieved.

deviceIsOpened(device_index: int)→ bool
Check if the specified Digilent Waveforms device is already opened by this or any other process.

Parameters
device_index (int) – Zero-based index of the previously enumerated Digilent Wave-
forms device (see the enumerateDevices() method).

Returns
True if the Digilent Waveforms device is already opened, False otherwise.

Return type
bool

Raises
DwfLibraryError – The open state of the Digilent Waveforms device cannot be deter-
mined.

userName(device_index: int)→ str
Retrieve the username of the selected Digilent Waveforms device.

Parameters
device_index (int) – Zero-based index of the previously enumerated Digilent Wave-
forms device (see the enumerateDevices() method).

Returns
The username of the Digilent Waveforms device, which is a short name indicating the
device type (e.g., “Discovery2”, “DDiscovery”).

Return type
str

Raises
DwfLibraryError – The username of the Digilent Waveforms device cannot be re-
trieved.

deviceName(device_index: int)→ str
Retrieve the device name of the selected Digilent Waveforms device.

3.2. Device enumeration functionality 17

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

pydwf, Release 1.1.19

Parameters
device_index (int) – Zero-based index of the previously enumerated Digilent Wave-
forms device (see the enumerateDevices() method).

Returns
The device name of the Digilent Waveforms device, which is a long name denoting the
device type (e.g., “Analog Discovery 2”, “Digital Discovery”).

Return type
str

Raises
DwfLibraryError – The device name of the Digilent Waveforms device cannot be re-
trieved.

serialNumber(device_index: int)→ str
Retrieve the 12-digit, unique serial number of the enumerated Digilent Waveforms device.

Parameters
device_index (int) – Zero-based index of the previously enumerated Digilent Wave-
forms device (see the enumerateDevices() method).

Returns

The 12 hex-digit unique serial number of the Digilent Waveforms device.

The ‘SN:’ prefix returned by the underlying C API function (for most devices) is dis-
carded.

Return type
str

Raises

• DwfLibraryError – The serial number of the Digilent Waveforms device cannot be
retrieved.

• PyDwfError – The serial number of the device is not 12 characters long.

enumerateConfigurations(device_index: int)→ int
Build an internal list of detected configurations for the specified Digilent Waveforms device.

This method must be called before using the configInfo() method described below, because that
method obtains information from the internal device configuration list that is built by this method.

Parameters
device_index (int) – Zero-based index of the previously enumerated Digilent Wave-
forms device (see the enumerateDevices() method).

Returns
The count of configurations of the Digilent Waveforms device.

Return type
int

Raises
DwfLibraryError – The configuration list of the Digilent Waveforms device cannot be
retrieved.

configInfo(config_index: int, info: DwfEnumConfigInfo)→ int | str
Return information about a Digilent Waveforms device configuration.

Parameters

• config_index (int) – Zero-based index of the previously enumerated configuration
(see the enumerateConfigurations() method described above).

• info (DwfEnumConfigInfo) – Selects which configuration parameter to retrieve.

18 Chapter 3. The DwfLibrary class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Note: For most values of the info parameter, this method returns an integer, but for some values it
returns a string. Refer to the DwfEnumConfigInfo documentation for details.

This explains the somewhat unusual Union[int, str] return type of this method.

Returns
The value of the selected configuration parameter, of the selected configuration.

Return type
Union[int, str]

Raises
DwfLibraryError – The requested configuration information of the Digilent Wave-
forms device cannot be retrieved.

analogInChannels(device_index: int)→ int
Return the analog input channel count of the selected Digilent Waveforms device.

Warning: This method is obsolete.

Use either of the following instead:

• method configInfo() to obtain the DwfEnumConfigInfo.AnalogInChannelCount con-
figuration value;

• AnalogIn.channelCount()

Parameters
device_index (int) – Zero-based index of the previously enumerated Digilent Wave-
forms device (see the enumerateDevices() method).

Returns
The number of analog input channels of the Digilent Waveforms device.

Return type
int

Raises
DwfLibraryError – The analog-in channel count of the Digilent Waveforms device
cannot be retrieved.

analogInBufferSize(device_index: int)→ int
Retrieve the analog input buffer size of the selected Digilent Waveforms device.

Warning: This method is obsolete.

Use either of the following instead:

• method configInfo() to obtain the DwfEnumConfigInfo.AnalogInBufferSize config-
uration value;

• AnalogIn.bufferSizeGet()

Parameters
device_index (int) – Zero-based index of the previously enumerated Digilent Wave-
forms device (see the enumerateDevices() method).

Returns
The analog input buffer size of the selected Digilent Waveforms device.

3.2. Device enumeration functionality 19

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Return type
int

Raises
DwfLibraryError – The analog-in buffer size of the Digilent Waveforms device cannot
be retrieved.

analogInBits(device_index: int)→ int
Retrieve the analog input bit resolution of the selected Digilent Waveforms device.

Warning: This method is obsolete.

Use AnalogIn.bitsInfo() instead.

Parameters
device_index (int) – Zero-based index of the previously enumerated Digilent Wave-
forms device (see the enumerateDevices() method).

Returns
The analog input bit resolution of the selected Digilent Waveforms device.

Return type
int

Raises
DwfLibraryError – The analog-in bit resolution of the Digilent Waveforms device can-
not be retrieved.

analogInFrequency(device_index: int)→ float
Retrieve the analog input sample frequency of the selected Digilent Waveforms device.

Warning: This method is obsolete.

Use AnalogIn.frequencyInfo() instead.

Parameters
device_index (int) – Zero-based index of the previously enumerated Digilent Wave-
forms device (see the enumerateDevices() method).

Returns
The analog input sample frequency of the selected Digilent Waveforms device, in samples
per second.

Return type
float

Raises
DwfLibraryError – The analog input sample frequency of the Digilent Waveforms de-
vice cannot be retrieved.

property dwf

Return the DwfLibrary instance of which we are an attribute.

Returns
The DwfLibrary instance.

Return type
DwfLibrary

20 Chapter 3. The DwfLibrary class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

3.3 Device control functionality

The device control functionality provides a way to open specific Digilent Waveforms devices, and to close all
previously opened devices. It is complemented by the methods provided be the DwfDevice class.

3.3.1 Using the device control functionality

To use the device control functionality you first need to initialize a DwfLibrary instance. The device control
functionality can then be accessed via its deviceControl attribute, which is an instance of the DeviceControl
class:

from pydwf import DwfLibrary

dwf = DwfLibrary()

Open the first available Digilent Waveforms device, and close it immediately.
device = dwf.deviceControl.open(-1)
device.close()

3.3.2 Alternatives to the device control functionality

For most users, there is little reason to use the device control API directly. Consider the following alternatives:

• The DeviceControl.open() method is occasionally useful, but the pydwf.utilities.
openDwfDevice() convenience function provides a more powerful alternative.

• The DeviceControl.closeAll()method is not recommended for general use. Devices can and should be
closed individually, either by calling their DwfDevice.close()method explicitly, or by using their context
manager feature.

• The device control API of the underlying C library supports several more functions that work on a previously
opened Digilent Waveforms device. In pydwf, these functions are available as methods of the DwfDevice
class.

3.3.3 DeviceControl reference

class DeviceControl

The DeviceControl class provides access to the device control functionality of a DwfLibrary.

Attention: Users of pydwf should not create instances of this class directly.

It is instantiated during initialization of a DwfLibrary and subsequently assigned to its public
deviceControl attribute for access by the user.

open(device_index: int, config_index: int | None = None)→ DwfDevice
Open a Digilent Waveforms device identified by the device index, using a specific device configuration
index if specified.

Note: This method combines the functionality of the C API functions ‘FDwfDeviceOpen()’ and
‘FDwfDeviceConfigOpen()’ into a single method. The call that is actually made depends on the value
of the config_index parameter.

3.3. Device control functionality 21

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

pydwf, Release 1.1.19

Note: This method can take several seconds to complete.

Parameters

• device_index (int) – The zero-based index of the previously enumerated device
(see the DeviceEnum.enumerateDevices() method).

To automatically enumerate all connected devices and open the first discovered device,
use the value -1 for this parameter.

• config_index (Optional[int]) – The zero-based index of the device configuration
to use (see the DeviceEnum.enumerateConfigurations()method). If None, open
the default (first) device configuration.

See also:

The pydwf.utilities.openDwfDevice() convenience function provides a more powerful way to
select and open a device and, if desired, specify its device configuration.

Returns
The DwfDevice instance created as a result of this call.

Return type
DwfDevice

Raises
DwfLibraryError – The specified device or configuration cannot be opened.

openEx(options: str, separator: str = ',')→ DwfDevice
Open a device using options given as a string.

This provides an extended (hence the ‘Ex’ prefix) version of the :py:meth:open method.

The following table lists the options that can be specified in the options string, as listed in the DWF
documentation. Not all of these have been verified to work.

Table 1: Options for the openEx method

option description
index:# Connect to device by enumeration 0 based index.
sn:########## Open by serial number. (The devices will be enumerated).
name:device-name Open by device name number. (The devices will be enumerated).
config:# Use configuration (0-based index).
ip:#.#.#.#/host Connect to network device identified by IP address or hostname.
ip:user:pass*@#.#.#.#/*host Connect to network device (with username and password).
user:username Provide username.
pass:password Provide password.
secure:# Enable TLS communication encryption (0/1).

Todo: Figure out the precise syntax and semantics of options.

Note: This method was added in DWF version 3.17.

Parameters

• options (str) – A string listing options, separated by a ‘separator’ string (see below).

22 Chapter 3. The DwfLibrary class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pydwf, Release 1.1.19

• separator (str) – The separator string that separating options. Default: a single
comma (‘,’).

Returns
The DwfDevice instance created as a result of this call.

Return type
DwfDevice

Raises
DwfLibraryError – The operation could not be performed.

closeAll()→ None
Close all Digilent Waveforms devices opened by the calling process.

This method does not close all Digilent Waveforms devices across all processes.

Raises
DwfLibraryError – The close all operation failed.

property dwf

Return the DwfLibrary instance of which we are an attribute.

Returns
The DwfLibrary instance.

Return type
DwfLibrary

3.4 Signal processing functionality

The signal processing functionality provides several standard functions for processing digitized analog signals.

3.4.1 Using the signal processing functionality

To use the signal processing functionality you first need to initialize a DwfLibrary instance. The signal processing
functionality can then be accessed via its spectrum attribute, which is an instance of the Spectrum class:

from pydwf import DwfLibrary, DwfWindow

dwf = DwfLibrary()

Make an 11-element Hamming window.
(hamming_window, noise_equivalent_bandwidth) = dwf.spectrum.window(11, DwfWindow.
→˓Hamming)

3.4.2 Spectrum reference

class Spectrum

The Spectrum class provides access to the signal processing functionality of a DwfLibrary.

Attention: Users of pydwf should not create instances of this class directly.

It is instantiated during initialization of a DwfLibrary and subsequently assigned to its public spectrum
attribute for access by the user.

3.4. Signal processing functionality 23

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

pydwf, Release 1.1.19

window(n: int, winfunc: DwfWindow, beta: float | None = None)→ Tuple[ndarray, float]
Return the window coefficients for the specified window, and the window’s noise-equivalent bandwidth.

Parameters

• n (int) – The length of the window to be generated.

• winfunc (DwfWindow) – The type of window to be generated.

• beta (Optional[float]) – Parameter for the Kaiser window; unused for other win-
dows. If not specified, a value of 0.5 is used.

Returns

A two-element tuple. The first element of the tuple is a numpy array of length n, contain-
ing the window coefficients. All windows supported are symmetric, and they are scaled
to have the sum of their values equal to n.

The second element of the tuple is the noise equivalent bandwidth of the signal. For a
coefficient array w, this value is equal to len(w) * np.sum(w**2) / np.sum(w)**2.

Return type
Tuple[np.ndarray, float]

Note: When working in Python, it may be better to use the functionality provided in the
scipy.signal.windows package instead.

fft(data: ndarray)→ Tuple[ndarray, ndarray]
Perform a Fast Fourier Transform.

Parameters
data – The real-valued data to be transformed. This must be a 1-dimensional array with
a length that is a power of 2.

Returns
A tuple (magnitude, phase); both the magnitude and phase arrays are real-valued 1D
numpy arrays with the same length as the input array data. The first array contains the
non-negative magnitude of the signal for this particular frequency; the second array con-
tains its phase.

Return type
Tuple[np.ndarray, np.ndarray]

Note: The scaling of the FFT calculated is unusual. Compared to Matlab, numpy, and most other
implementations, it is scaled by a factor (2 / n), with n the number of points in the input array.

To get from the (magnitude, phase) representation as returned by this function to a vector of complex
number that is comparable to what e.g. the numpy.fft.rfft function returns, you can do:

z = (len(magnitude) / 2.0) * magnitude * np.exp(phase * 1j)

When working in Python, it may be better to simply use the numpy.fft.rfft() function directly. It is faster
and provides support for data vectors with a length that is not a power of two.

transform(data: ndarray, num_bins: int, first_freq: float, last_freq: float)→ Tuple[ndarray, ndarray]
Perform a Chirp-Z transform.

Parameters

• data – The real-valued data to be transformed.

• num_bins (int) – The number of bins to be calculated.

24 Chapter 3. The DwfLibrary class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

• first_freq (float) – The frequency of the first bin, scaled to 0.5 * sam-
ple_frequency.

• 1 (Should be between 0 and) –

• inclusive. –

• last_freq (float) – The frequency of the last bin, scaled to 0.5 * sample_frequency.

• 1 –

• inclusive. –

Returns
A tuple (magnitude, phase); both the magnitude and phase arrays are real-valued 1D
numpy arrays with the same length as the input array data. The first array contains the
non-negative magnitude of the signal for this particular frequency; the second array con-
tains its phase.

Return type
Tuple[np.ndarray, np.ndarray]

Note: The scaling of the FFT calculated is unusual. Compared to Matlab, numpy, and most other
implementations, it is scaled by a factor (2 / n), with n the number of points in the input array.

To get from the (magnitude, phase) representation as returned by this function to a vector of complex
number that is comparable to what e.g. the scipy.signal.czt function returns, you can do:

z = (len(data) / 2.0) * magnitude * np.exp(phase * 1j)

When working in Python, it may be better to simply use the scipy.signal.czt() function directly.

property dwf

Return the DwfLibrary instance of which we are an attribute.

Returns
The DwfLibrary instance.

Return type
DwfLibrary

3.4. Signal processing functionality 25

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

26 Chapter 3. The DwfLibrary class and its attributes

CHAPTER

FOUR

THE DWFDEVICE CLASS AND ITS ATTRIBUTES

This section discusses the DwfDevice class and the twelve attributes that provide access to most of its functionality.

4.1 The DwfDevice class

The DwfDevice class represents a previously opened Digilent Waveforms device. It is the entry point to all useful
functionality of the Digilent Waveforms device.

4.1.1 Using the DwfDevice class

To obtain a DwfDevice instance you first need to initialize a DwfLibrary instance. The DwfLibrary can then
be used to obtain a DwfDevice, either by using the DeviceControl.open() method or by using the pydwf.
utilities.openDwfDevice() convenience function.

After the program is done using a device, it should be closed. This can be done explicitly, via the DwfDevice.
close()method, or implicitly, by using the DwfDevice as a so-called context manager for itself. The latter method
is often preferable, since it guarantees that the device will be closed even when an exception occurs while using it:

from pydwf import DwfLibrary
from pydwf.utilities import openDwfDevice

dwf = DwfLibrary()

with openDwfDevice(dwf) as device:
When we leave the 'with' statement, the device is guaranteed to be closed.
print("Trigger sources supported by this device:", device.triggerInfo())

This is true even if an exception is raised inside the 'with' statement's body:
raise RuntimeError("yikes!")

After obtaining a DwfDevice, you can use the dozen or so methods it provides. These methods are documented as
part of the DwfDevice class in the next section.

Twelve attributes are provided to access particular sub-APIs of a DwfDevice instance. Depending on the type of
task that you are using your Digilent Waveforms device for, one or several of these attributes will be your main
handle to configure instruments and to send or receive data:

• analogIn provides a multi-channel oscilloscope;

• analogOut provides a multi-channel analog signal generator;

• analogIO provides voltage, current, and temperature monitoring and control;

• analogImpedance provides measurement of impedance and other quantities;

• digitalIn provides a multi-channel digital logic analyzer;

• digitalOut provides a multi-channel digital pattern generator;

27

pydwf, Release 1.1.19

• digitalIO provides static digital I/O functionality;

• protocol.uart provides UART protocol configuration, send, and receive functionality;

• protocol.spi provides SPI protocol configuration, send, and receive functionality;

• protocol.i2c provides I2C protocol configuration, send, and receive functionality;

• protocol.can provides CAN protocol configuration, send, and receive functionality;

• protocol.swd provides SWD protocol configuration, send, and receive functionality.

4.1.2 DwfDevice reference

class DwfDevice

The DwfDevice represents a single Digilent Waveforms test and measurement device.

Attention: Users of pydwf should not create instances of this class directly.

Use DeviceControl.open() or pydwf.utilities.openDwfDevice() to obtain a valid DwfDevice
instance.

The main test and measurement functionality of a Digilent Waveforms device is provided as multiple sub-
interfaces (instruments, protocols, and measurements). To access those, use one of the twelve attributes
described below.

DwfDevice attributes

analogIn

Provides access analog input (oscilloscope) functionality.

Type
AnalogIn

analogOut

Provides access to the analog output (waveform generator) functionality.

Type
AnalogOut

analogIO

Provides access to the analog I/O (voltage source, monitoring) functionality.

Type
AnalogIO

analogImpedance

Provides access to the analog impedance measurement functionality.

Type
AnalogImpedance

digitalIn

Provides access to the dynamic digital input (logic analyzer) functionality.

Type
DigitalIn

digitalOut

Provides access to the dynamic digital output (pattern generator) functionality.

28 Chapter 4. The DwfDevice class and its attributes

pydwf, Release 1.1.19

Type
DigitalOut

digitalIO

Provides access to the static digital I/O functionality.

Type
DigitalIO

protocol.uart

Provides access to the UART protocol functionality.

Type
ProtocolUART

protocol.can

Provides access to the CAN protocol functionality.

Type
ProtocolCAN

protocol.spi

Provides access to the SPI protocol functionality.

Type
ProtocolSPI

protocol.i2c

Provides access to the I2C protocol functionality.

Type
ProtocolI2C

protocol.swd

Provides access to the SWD protocol functionality.

Type
ProtocolSWD

DwfDevice properties and methods

property dwf: DwfLibrary

Return the DwfLibrary instance that was used to create (open) this DwfDevice instance.

This is useful if we have a DwfDevice, but we need its DwfLibrary.

Returns
The DwfLibrary that was used to create (open) this DwfDevice instance.

Return type
DwfLibrary

property digitalUart: ProtocolUART

Old attribute-style access to the device’s UART functionality.

Warning: This attribute is obsolete. Use protocol.uart instead.

property digitalSpi: ProtocolSPI

Old attribute-style access to the device’s SPI functionality.

4.1. The DwfDevice class 29

pydwf, Release 1.1.19

Warning: This attribute is obsolete. Use protocol.spi instead.

property digitalI2c: ProtocolI2C

Old attribute-style access to the device’s I2C functionality.

Warning: This attribute is obsolete. Use protocol.i2c instead.

property digitalCan: ProtocolCAN

Old attribute-style access to the device’s CAN functionality.

Warning: This attribute is obsolete. Use protocol.can instead.

property digitalSwd: ProtocolSWD

Old attribute-style access to the device’s SWD functionality.

Warning: This attribute is obsolete. Use DwfDevice.protocol.swd instead.

close()→ None
Close the device.

This method should be called when access to the device is no longer needed.

Once this method returns, the DwfDevice can no longer be used.

Raises
DwfLibraryError – The device cannot be closed.

autoConfigureSet(auto_configure: int)→ None
Enable or disable the autoconfiguration setting of the device.

When this setting is enabled (the default), any change to an instrument setting is automatically transmit-
ted to the Digilent Waveforms hardware device, without the need for an explicit call to the instrument’s
configure() method.

This adds a small amount of latency to every Set() method; just as much latency as calling the corre-
sponding configure() method explicitly after the Set() method would add.

Autoconfiguration is enabled by default, and there is little reason to turn it off unless the user program
wants to make frequent changes to many settings at once between measurements.

With value 3, configuration will be applied dynamically, without stopping the instrument.

Parameters
auto_configure (int) – The new autoconfiguration setting.

Possible values for this option:

• 0 — disable

• 1 — enable

• 3 — dynamic

Raises
DwfLibraryError – The value cannot be set.

autoConfigureGet()→ int
Return the autoconfiguration setting of the device.

30 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Returns

The current autoconfiguration setting.

Possible values for this option:

• 0 — disable

• 1 — enable

• 3 — dynamic

Return type
int

Raises
DwfLibraryError – The value cannot be retrieved.

reset()→ None
Reset all device and instrument settings to default values.

The new settings are applied immediately if autoconfiguration is enabled.

Raises
DwfLibraryError – The device cannot be reset.

enableSet(enable: bool)→ None
Enable or disable the device.

Parameters
enable (bool) – True for enable, False for disable.

Raises
DwfLibraryError – The device’s enabled state cannot be set.

triggerInfo()→ list[DwfTriggerSource]
Return the available trigger source options for the global trigger bus.

Refer to the section on triggering for more information.

The four main instruments (AnalogIn, AnalogOut, DigitalIn, and DigitalOut) can be configured to
start their operation (data acquisition for the In instruments; signal generation for the Out instruments)
immediately after some event happens. This is called triggering.

Each of the instruments can be configured independently to use any of the trigger sources available
inside the device. This method returns a list of all trigger sources that are available to each of the
instruments.

Returns
A list of available trigger sources.

Return type
list[DwfTriggerSource]

Raises
DwfLibraryError – The list of supported trigger sources cannot be retrieved.

triggerSet(pin_index: int, trigger_source: DwfTriggerSource)→ None
Configure the trigger I/O pin with a specific trigger source option.

Digilent Waveforms devices have dedicated digital I/O pins that can be used either as trigger inputs
or trigger outputs. Use this method to select which line of the global triggering bus is driven on those
pins, e.g. to trigger some external device or to monitor the Digilent Waveforms device’s internal trigger
behavior.

Pass DwfTriggerSource.None_ to disable trigger output on the pin. This is the default setting, and
the appropriate value to use when the intention is to have some external trigger signal drive the pin.

Refer to the section on triggering for more information.

4.1. The DwfDevice class 31

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

pydwf, Release 1.1.19

Parameters

• pin_index (int) – The trigger pin to configure.

• trigger_source (DwfTriggerSource) – The trigger source to select.

Raises
DwfLibraryError – The trigger source cannot be set.

triggerGet(pin_index: int)→ DwfTriggerSource
Return the selected trigger source for a trigger I/O pin.

Refer to the section on triggering for more information.

Parameters
pin_index (int) – The pin for which to obtain the selected trigger source.

Returns
The trigger source setting for the selected pin.

Return type
DwfTriggerSource

Raises
DwfLibraryError – The trigger source cannot be retrieved.

triggerPC()→ None
Generate a trigger pulse on the PC trigger line.

The generated pulse will trigger any instrument that is configured with trigger source
DwfTriggerSource.PC, and currently armed (i.e., waiting for a trigger).

Raises
DwfLibraryError – The PC trigger line cannot be pulsed.

triggerSlopeInfo()→ list[DwfTriggerSlope]
Return the supported trigger slope options.

Returns
A list of supported trigger slope values.

Return type
list[DwfTriggerSlope]

Raises
DwfLibraryError – The trigger slope options cannot be retrieved.

paramSet(parameter: DwfDeviceParameter, value: int)→ None
Set a device parameter value.

Device parameters are settings of a specific DwfDevice. Refer to the device parameters section for
more information.

This method sets a device parameter value of a currently opened DwfDevice.

Warning: The device parameter values are not checked to make sure they correspond to a valid
value for the current device.

Parameters

• parameter (DwfDeviceParameter) – The device parameter to set.

• value (int) – The value to assign to the parameter.

Raises
DwfLibraryError – The specified device parameter cannot be set.

32 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

paramGet(parameter: DwfDeviceParameter)→ int
Get a device parameter value.

Device parameters are settings of a specific DwfDevice. Refer to the device parameters section for
more information.

Parameters
parameter (DwfDeviceParameter) – The device parameter to get.

Returns
The integer value of the parameter.

Return type
int

Raises
DwfLibraryError – The value of the specified device parameter cannot be retrieved.

4.2 Analog input instrument

The AnalogIn instrument provides multiple channels of analog input on devices that support it, such as the Ana-
log Discovery and the Analog Discovery 2. It provides the functionality normally associated with a stand-alone
oscilloscope.

Todo: This section is missing some important information:

• A discussion about the different acquisition modes;

• A description of how the status variables behave in the different acquisition modes;

• A discussion of the precise meaning of all settings.

4.2.1 Using the analog input instrument

To use the AnalogIn instrument you first need to initialize a DwfLibrary instance. Next, you open a specific device.
The device’s AnalogIn instrument can now be accessed via its analogIn attribute, which is an instance of the
AnalogIn class.

For example:

from pydwf import DwfLibrary
from pydwf.utilities import openDwfDevice

dwf = DwfLibrary()

with openDwfDevice(dwf) as device:

Get a reference to the device's AnalogIn instrument.
analogIn = device.analogIn

Use the AnalogIn instrument.
analogIn.reset()

4.2. Analog input instrument 33

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

4.2.2 The AnalogIn state machine

The AnalogIn instrument is controlled by a state machine. As a measurement is prepared and executed, the instru-
ment goes through its various states.

The current state of the instrument is returned by the analogIn.status() method, and is of type DwfState.

The figure below shows the states used by the AnalogIn instrument and the transitions between them:

Fig. 1: States of the AnalogIn instrument

The AnalogIn states are used as follows:

1. Ready

In this preparatory state, instrument settings can be changed that specify the behavior of the instrument in the
coming measurement. If the auto-configure setting of the device is enabled (the default), setting changes will
automatically be transferred to the device. If not, an explicit call to the analogIn.configure() method
with the reconfigure parameter set to True is needed to transfer updated settings to the device.

Once the instrument is properly configured, an acquisition can be started by calling the analogIn.
configure()with the start parameter set to True. This will start the first stage of the acquisition by entering
the Prefill state.

2. Configure

This state is entered momentarily when a setting is being pushed to the device, either by changing the setting
while auto-configure is enabled, or by an explicit call to analogIn.configure() with the reconfigure
parameter set to True. The settings inside the device will be updated, and the device will immediately
thereafter go back to the Ready state, unless the start parameter to analogIn.configure() was set to
True.

3. Prefill

This state marks the beginning of an acquisition sequence. During the Prefill state, input samples will be
acquired until enough samples are buffered for the instrument to be ready to react to a trigger.

This state is only relevant if the trigger position has been configured in such a way that the measurement
must also yield sample values prior to the moment of triggering.

Once enough samples are received for the instrument to be able to react to a trigger, it proceeds to the Armed
state.

4. Armed

In this state the instrument continuously captures samples and monitors the configured trigger input. As soon
as a trigger event is detected, the instrument proceeds to the Running state.

5. Running

In this state the instrument continues capturing samples until the acquisition is complete. Completion is
reached when the acquisition buffer has filled up in Single mode, or when the recording length has been
reached in Record mode. When completion is reached, the instrument proceeds to the Done state.

6. Done

This state indicates that a measurement has finished.

From this state, it is possible to go back to the Ready state by performing any kind of configuration, or to
start a new acquisition with the same settings.

34 Chapter 4. The DwfDevice class and its attributes

pydwf, Release 1.1.19

4.2.3 AnalogIn instrument API overview

With 101 methods, the AnalogIn instrument is the most complicated instrument supported by the Digilent Wave-
forms API. Below, we categorize all its methods and shortly introduce them. Detailed information on all methods
can be found in the AnalogIn class reference that follows.

Instrument control

Like all instruments supported by the Digilent Waveforms library, the AnalogIn instrument provides reset(),
configure(), and status() methods.

The reset() method resets the instrument.

The configure() method is used to explicitly transfer settings to the instrument, and/or to start a configured
operation.

The status() method retrieves status information from the instrument. Optionally, it can also retrieve bulk data,
i.e., analog signal and noise samples. The method returns the current DwfState of the AnalogIn instrument; to
obtain more elaborate status information, one of the methods in the next two sections must be used.

Table 1: Instrument control (3 methods)

control operation type/unit methods
reset instrument n/a reset()
configure instrument n/a configure()
request instrument status DwfState status()

Status variables

When executing the status() method, status information is transferred from the AnalogIn instrument to the PC.
Several status variables can then be retrieved by using the methods listed below.

Table 2: Status variables (7 methods)

status value type/unit method
timestamp tuple [s] statusTime()
most recent sample value float [V] statusSample()
auto-triggered flag bool statusAutoTriggered()
samples left in acquisition int [samples] statusSamplesLeft()
samples valid count int [samples] statusSamplesValid()
buffer write index int [samples] statusIndexWrite()
recording status tuple [samples] statusRecord()

Status data retrieval

Executing the status() method with the read_data parameter set to True transfers captured samples from the
instrument to the PC. The samples can then be retrieved using the methods listed here.

Table 3: Status data retrieval (5 methods)

status data type/unit methods
get sample data (without buffer offset) float [V] statusData()
get sample data (with buffer offset) float [V] statusData2()
get sample data (raw samples, with buffer offset) int [-] statusData16()
get sample noise (without buffer offset) float [V] statusNoise()
get sample noise (with offset) float [V] statusNoise2()

4.2. Analog input instrument 35

pydwf, Release 1.1.19

Acquisition settings

The following methods are used to get and set channel-independent configuration values related to acquisition, and
to obtain information about their possible values.

Table 4: Acquisition settings (15 methods)

setting type/unit methods
ADC sample resolution int [bits] bitsInfo()
record length float [s] recordLengthSet() , –Get()
sample frequency float [Hz] frequencyInfo() , –Set() , –Get()
sample buffer size int [samples] bufferSizeInfo() , –Set() , –Get()
noise buffer size int [samples] noiseSizeInfo() , –Set() , –Get()
acquisition mode DwfAcquisitionMode acquisitionModeInfo() , –Set() , –Get()

Channel count

This method returns the number of analog input channels.

Table 5: Channel count (2 methods)

operation type/unit method
channel count channel count, distinguish real/filter chan-
nels

int int channelCount()
channelCount()

Channel configuration

The following methods are used to get and set channel-dependent configuration values, and to obtain information
about their possible values.

Table 6: Channel configuration (21 methods)

setting type/unit methods
channel enable bool channelEnableSet() , –Get()
channel filter DwfAnalogInFilter channelFilterInfo() , –Set() , –Get()
channel range float [V] channelRangeInfo() , –Set() , –Get() , –Steps()
channel offset float [V] channelOffsetInfo() , –Set() , –Get()
channel attenuation float [-] channelAttenuationSet() , –Get()
channel bandwidth float [Hz] channelBandwidthSet() , –Get()
channel impedance float [Ohms] channelImpedanceSet() , –Get()
channel coupling DwfAnalogCoupling channelCouplingInfo() , –Get() , –Get()

Instrument trigger configuration

The following methods are used to configure the trigger of the AnalogIn instrument. The trigger source is fully
configurable; the AnalogIn instrument can use its own trigger detector for triggering, but it is also possible to use a
different trigger source. For that reason, we distinguish between the methods that configure the instrument trigger,
and the methods that configure the AnalogIn trigger detector that are discussed below.

Table 7: Instrument trigger configuration (10 methods)

setting type/unit methods
trigger source DwfTriggerSource triggerSourceInfo() , –Set() , –Get()
trigger position float [s] triggerPositionInfo() , –Set() , –Get() , –Status()
trigger auto-timeout float [s] triggerAutoTimeoutInfo() , –Set() , –Get()

36 Chapter 4. The DwfDevice class and its attributes

pydwf, Release 1.1.19

Note: The triggerSourceInfo() method is obsolete. Use the generic DwfDevice.triggerInfo() method
instead.

Force instrument trigger

The triggerForce() method can be used to force the AnalogIn instrument to start acquiring.

Table 8: Force instrument trigger (1 method)

operation type/unit method
force trigger n/a triggerForce()

Trigger detector configuration

The AnalogIn trigger detector is highly configurable. It has nine different settings that can be queried and set using
the methods below.

Table 9: Trigger detector configuration (27 methods)

setting type/unit methods
trigger hold-off float [s] triggerHoldOffInfo() , –Set() , –Get()
trigger type DwfAnalogInTriggerType triggerTypeInfo() , –Set() , –Get()
trigger channel int [-] triggerChannelInfo() , –Set() , –Get()
trigger filter DwfAnalogInFilter triggerFilterInfo() , –Set() , –Get()
trigger level float [V] triggerLevelInfo() , –Set() , –Get()
trigger hysteresis float [V] triggerHysteresisInfo() , –Set() ,

–Get()
trigger slope DwfTriggerSlope triggerConditionInfo() , –Set() ,

–Get()
trigger length float [s] triggerLengthInfo() , –Set() , –Get()
trigger length con-
dition

DwfAnalogInTriggerLengthConditiontriggerLengthConditionInfo() , –Set() ,
–Get()

Counter functionality

Table 10: Counter configuration (4 methods)

setting type/unit methods
counter configuration
counter status

float [s], int [-] float [s], float
[Hz], int [-]

counterInfo() , –Set() , –Get()
counterStatus()

Sampling clock configuration

The AnalogIn instrument can use a sampling clock that is different from the internally generated clock that it would
normally use. Three settings determine its behavior.

Table 11: Sampling clock configuration (6 methods)

setting type/unit methods
sampling source DwfTriggerSource samplingSourceSet() , –Get()
sampling slope DwfTriggerSlope samplingSlopeSet() , –Get()
sampling delay float [s] samplingDelaySet() , –Get()

4.2. Analog input instrument 37

pydwf, Release 1.1.19

4.2.4 AnalogIn reference

class AnalogIn

The AnalogIn class provides access to the analog input (oscilloscope) instrument of a DwfDevice.

Attention: Users of pydwf should not create instances of this class directly.

It is instantiated during initialization of a DwfDevice and subsequently assigned to its public analogIn
attribute for access by the user.

reset()→ None
Reset all AnalogIn instrument parameters to default values.

If autoconfiguration is enabled at the device level, the reset operation is performed immediately; oth-
erwise, an explicit call to the configure() method is required.

Raises
DwfLibraryError – An error occurred while executing the reset operation.

configure(reconfigure: bool, start: bool)→ None
Configure the instrument and start or stop the acquisition operation.

Parameters

• reconfigure (bool) – If True, the instrument settings are sent to the instrument. In
addition, the auto-trigger timeout is reset.

• start (bool) – If True, an acquisition is started. If False, an ongoing acquisition is
stopped.

Raises
DwfLibraryError – An error occurred while executing the configure operation.

status(read_data_flag: bool)→ DwfState
Get the AnalogIn instrument state.

This method performs a status request to the AnalogIn instrument and receives its response.

The following methods can be used to retrieve AnalogIn instrument status information as a result of
this call, regardless of the value of the read_data_flag parameter:

• statusTime()

• statusSample()

• statusAutoTriggered()

• statusSamplesLeft()

• statusSamplesValid()

• statusIndexWrite()

• statusRecord()

The following methods can be used to retrieve bulk data obtained from the AnalogIn instrument as a
result of this call, but only if the read_data_flag parameter is True:

• statusData()

• statusData2()

• statusData16()

• statusNoise()

• statusNoise2()

38 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pydwf, Release 1.1.19

Parameters
read_data_flag (bool) – If True, read sample data from the instrument.

In Single acquisition mode, the data will be read only when the acquisition is finished.

Returns
The status of the AnalogIn instrument.

Return type
DwfState

Raises
DwfLibraryError – An error occurred while executing the status operation.

statusTime()→ Tuple[int, int, int]
Retrieve the timestamp of the current status information.

Returns

A three-element tuple, indicating the POSIX timestamp of the status request. The first
element is the POSIX second, the second and third element are the numerator and de-
nominator, respectively, of the fractional part of the second.

In case status() hasn’t been called yet, this method will return zeroes for all three tuple
elements.

Return type
Tuple[int, int, int]

Raises
DwfLibraryError – An error occurred while retrieving the status time.

statusSample(channel_index: int)→ float
Get the last ADC conversion sample from the specified AnalogIn instrument channel, in Volts.

Note: This value is updated even if the status() method is called with argument False.

Parameters
channel_index (int) – The channel index, in the range 0 to channelCount()-1.

Returns
The most recent ADC value of this channel, in Volts.

Return type
float

Raises
DwfLibraryError – An error occurred while retrieving the sample value.

statusAutoTriggered()→ bool
Check if the current acquisition is auto-triggered.

Returns
True if the current acquisition is auto-triggered, False otherwise.

Return type
bool

Raises
DwfLibraryError – An error occurred while retrieving the auto-triggered status.

statusSamplesLeft()→ int
Retrieve the number of samples left in the acquisition, in samples.

4.2. Analog input instrument 39

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Returns
In case a finite-duration acquisition is active, the number of samples remaining to be
acquired in the acquisition.

Return type
int

Raises
DwfLibraryError – An error occurred while retrieving the number of samples left.

statusSamplesValid()→ int
Retrieve the number of valid acquired data samples.

In Single acquisition mode, valid samples are returned when status() reports a result of Done.

The actual number of samples transferred and reported back here is equal to max(16,
bufferSizeGet()).

Returns
The number of valid samples.

Return type
int

Raises
DwfLibraryError – An error occurred while retrieving the number of valid samples.

statusIndexWrite()→ int
Retrieve the buffer write index.

This is needed in ScanScreen acquisition mode to display the scan bar.

Returns
The buffer write index.

Return type
int

Raises
DwfLibraryError – An error occurred while retrieving the write-index.

statusRecord()→ Tuple[int, int, int]
Retrieve information about the recording process.

Data loss occurs when the device acquisition is faster than the read process to the PC.

If this happens, the device recording buffer is filled and data samples are overwritten.

Corrupt samples indicate that the samples have been overwritten by the acquisition process during the
previous read.

In this case, try optimizing the loop process for faster execution or reduce the acquisition frequency or
record length to be less than or equal to the device buffer size (i.e., record_length is less than or equal
to buffer_size / sample_frequency).

Returns
A three-element tuple containing the counts for available, lost, and corrupt data samples,
in that order.

Return type
Tuple[int, int, int]

Raises
DwfLibraryError – An error occurred while retrieving the record status.

statusData(channel_index: int, count: int)→ ndarray
Retrieve the acquired data samples from the specified AnalogIn instrument channel.

This method returns samples as voltages, calculated from the raw, binary sample values as follows:

40 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

pydwf, Release 1.1.19

voltages = analogIn.channelOffsetGet(channel_index) + \
analogIn.channelRangeGet(channel_index) * (raw_samples / 65536.0)

Note that the applied calibration is channel-dependent.

Parameters

• channel_index (int) – The channel index, in the range 0 to channelCount()-1.

• count (int) – The number of samples to retrieve.

Returns
A 1D numpy array of floats, in Volts.

Return type
nd.array

Raises
DwfLibraryError – An error occurred while retrieving the sample data.

statusData2(channel_index: int, offset: int, count: int)→ ndarray
Retrieve the acquired data samples from the specified AnalogIn instrument channel.

This method returns samples as voltages, calculated from the raw, binary sample values as follows:

voltages = analogIn.channelOffsetGet(channel_index) + \
analogIn.channelRangeGet(channel_index) * (raw_samples / 65536.0)

Note: The applied calibration is channel-dependent.

Parameters

• channel_index (int) – The channel index, in the range 0 to channelCount()-1.

• offset (int) – Sample offset.

• count (int) – Sample count.

Returns
A 1D numpy array of floats, in Volts.

Return type
nd.array

Raises
DwfLibraryError – An error occurred while retrieving the sample data.

statusData16(channel_index: int, offset: int, count: int)→ ndarray
Retrieve the acquired data samples from the specified AnalogIn instrument channel.

This method returns raw, signed 16-bit samples.

In case the ADC has less than 16 bits of raw resolution, least significant zero-bits are added to stretch
the range to 16 bits.

To convert these raw samples to voltages, use the following:

voltages = analogIn.channelOffsetGet(channel_index) + \
analogIn.channelRangeGet(channel_index) * (raw_samples / 65536.0)

Parameters

• channel_index (int) – The channel index, in the range 0 to channelCount()-1.

4.2. Analog input instrument 41

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

• offset (int) – The sample offset to start copying from.

• count (int) – The number of samples to retrieve.

Returns
A 1D numpy array of 16-bit signed integers.

Return type
nd.array

Raises
DwfLibraryError – An error occurred while retrieving the sample data.

statusNoise(channel_index: int, count: int)→ Tuple[ndarray, ndarray]
Retrieve the acquired noise samples from the specified AnalogIn instrument channel.

Parameters

• channel_index (int) – The channel index, in the range 0 to channelCount()-1.

• count (int) – Sample count.

Returns

A two-element tuple; each element is a 1D numpy array of floats, in Volts.

The first array contains the minimum values, the second array contains the maximum
values.

Raises
DwfLibraryError – An error occurred while retrieving the noise data.

statusNoise2(channel_index: int, offset: int, count: int)→ Tuple[ndarray, ndarray]
Retrieve the acquired data samples from the specified AnalogIn instrument channel.

Parameters

• channel_index (int) – The channel index, in the range 0 to channelCount()-1.

• offset (int) – Sample offset.

• count (int) – Sample count.

Returns

A two-element tuple; each element is a 1D numpy array of floats, in Volts.

The first array contains the minimum values, the second array contains the maximum
values.

Raises
DwfLibraryError – An error occurred while retrieving the noise data.

bitsInfo()→ int
Get the fixed the number of bits used by the AnalogIn ADC.

The number of bits can only be queried; it cannot be changed.

Note: The Analog Discovery 2 uses an Analog Devices AD9648 two-channel ADC. It converts 14-bit
samples at a rate of up to 125 MHz. So for the Analog Discovery 2, this method always returns 14.

Returns
The number of bits per sample for each of the AnalogIn channels.

Return type
int

42 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://www.analog.com/media/en/technical-documentation/data-sheets/AD9648.pdf
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Raises
DwfLibraryError – An error occurred while getting the number of bits.

recordLengthSet(record_duration: float)→ None
Set the AnalogIn record length, in seconds.

Note: This value is only used when the acquisition mode is configured as Record .

Parameters
record_duration (float) – The record duration to be configured, in seconds.

A record duration of 0.0 (zero) seconds indicates a request for an arbitrary-length record
acquisition.

Raises
DwfLibraryError – An error occurred while setting the record duration.

recordLengthGet()→ float
Get the AnalogIn record length, in seconds.

Note: This value is only used when the acquisition mode is configured as Record .

Returns

The currently configured record length, in seconds.

A record length of 0.0 (zero) seconds indicates a request for an arbitrary-length record
acquisition.

Return type
float

Raises
DwfLibraryError – An error occurred while getting the record length.

frequencyInfo()→ Tuple[float, float]
Retrieve the minimum and maximum configurable ADC sample frequency of the AnalogIn instrument,
in samples/second.

Returns
The valid sample frequency range (min, max), in samples/second.

Return type
Tuple[float, float]

Raises
DwfLibraryError – An error occurred while getting the allowed sample frequency
range.

frequencySet(sample_frequency: float)→ None
Set the ADC sample frequency of the AnalogIn instrument, in samples/second.

Parameters
sample_frequency (float) – Sample frequency, in samples/second.

Raises
DwfLibraryError – An error occurred while setting sample frequency.

4.2. Analog input instrument 43

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

frequencyGet()→ float
Get the ADC sample frequency of the AnalogIn instrument, in samples/second.

The ADC always runs at maximum frequency, but the method in which the samples are stored and
transferred can be configured individually for each channel with the channelFilterSet method.

Returns
The configured sample frequency, in samples/second.

Return type
float

Raises
DwfLibraryError – An error occurred while getting the sample frequency.

bufferSizeInfo()→ Tuple[int, int]
Returns the minimum and maximum allowable buffer size for the AnalogIn instrument, in samples.

When using the Record acquisition mode, the buffer size should be left at the default value, which is
equal to the maximum value. In other modes (e.g. Single), the buffer size determines the size of the
acquisition window.

Note: The maximum buffer size depends on the device configuration that was selected while opening
the device.

For example, on the Analog Discovery 2, the maximum AnalogIn buffer size can be 512, 2048, 8192,
or 16384, depending on the device configuration.

Returns
A two-element tuple. The first element is the minimum buffer size, the second element
is the maximum buffer size.

Return type
Tuple[int, int]

Raises
DwfLibraryError – An error occurred while getting the buffer size info.

bufferSizeSet(buffer_size: int)→ None
Adjust the AnalogIn instrument buffer size, expressed in samples.

The actual buffer size configured will be clipped by the bufferSizeInfo() values.

The actual value configured can be read back by calling bufferSizeGet().

Parameters
buffer_size (int) – The requested buffer size, in samples.

Raises
DwfLibraryError – An error occurred while setting the buffer size.

bufferSizeGet()→ int
Return the used AnalogIn instrument buffer size, in samples.

Returns
The currently configured buffer size, in samples.

Return type
int

Raises
DwfLibraryError – An error occurred while getting the buffer size.

44 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

noiseSizeInfo()→ int
Return the maximum noise buffer size for the AnalogIn instrument, in samples.

Returns
The maximum noise buffer size, in samples.

Raises
DwfLibraryError – An error occurred while getting the noise buffer size info.

noiseSizeSet(noise_buffer_size: int)→ None
Enable or disable the noise buffer for the AnalogIn instrument.

This method determines if the noise buffer is enabled or disabled.

Note: The name of this method and the type of its parameter (int) suggest that it can be used to specify
the size of the noise buffer, but that is not the case.

Any non-zero value enables the noise buffer; a zero value disables it.

If enabled, the noise buffer size reported by noiseSizeGet() is always equal to the size of the sample
buffer reported by bufferSizeGet(), divided by 8.

Parameters
noise_buffer_size (int) – Whether to enable (non-zero) or disable (zero) the noise
buffer.

Raises
DwfLibraryError – An error occurred while setting the noise buffer enabled/disabled
state.

noiseSizeGet()→ int
Return the currently configured noise buffer size for the AnalogIn instrument, in samples.

This value is automatically adjusted according to the sample buffer size, divided by 8. For instance,
setting the sample buffer size of 8192 implies a noise buffer size of 1024; setting the sample buffer size
to 4096 implies noise buffer size will be 512.

Returns
The currently configured noise buffer size. Zero indicates that the noise buffer is disabled.

Return type
int

Raises
DwfLibraryError – An error occurred while getting the noise buffer size.

acquisitionModeInfo()→ List[DwfAcquisitionMode]
Get a list of valid AnalogIn instrument acquisition modes.

Returns
A list of valid acquisition modes for the AnalogIn instrument.

Return type
List[DwfAcquisitionMode]

Raises
DwfLibraryError – An error occurred while getting the acquisition mode info.

acquisitionModeSet(acquisition_mode: DwfAcquisitionMode)→ None
Set the AnalogIn acquisition mode.

Parameters
acquisition_mode (DwfAcquisitionMode) – The acquisition mode to be configured.

4.2. Analog input instrument 45

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None

pydwf, Release 1.1.19

Raises
DwfLibraryError – An error occurred while setting the acquisition mode.

acquisitionModeGet()→ DwfAcquisitionMode
Get the currently configured AnalogIn acquisition mode.

Returns
The acquisition mode currently configured.

Return type
DwfAcquisitionMode

Raises
DwfLibraryError – An error occurred while getting the acquisition mode.

channelCount()→ int
Read the number of AnalogIn input channels.

Returns
The number of analog input channels.

Return type
int

Raises
DwfLibraryError – An error occurred while retrieving the number of analog input
channels.

channelCounts()→ Tuple[int, int, int]
Read the number of AnalogIn input channels, distinguishing between real and filter channels.

Returns
The number of real, fiiltered, and total analog input channels.

Return type
Tuple[int, int, int]

Raises
DwfLibraryError – An error occurred while retrieving the number of analog input
channels.

channelEnableSet(channel_index: int, channel_enable: bool)→ None
Enable or disable the specified AnalogIn input channel.

Parameters

• channel_index (int) – The channel index, in the range 0 to channelCount()-1.

• channel_enable (bool) – Whether to enable (True) or disable (False) the specified
channel.

Raises
DwfLibraryError – An error occurred while enabling or disabling the channel.

channelEnableGet(channel_index: int)→ bool
Get the current enable/disable status of the specified AnalogIn input channel.

Parameters
channel_index (int) – The channel index, in the range 0 to channelCount()-1.

Returns
Channel is enabled (True) or disabled (False).

Return type
bool

46 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

pydwf, Release 1.1.19

Raises
DwfLibraryError – An error occurred while getting the enabled/disabled state of the
channel.

channelFilterInfo()→ List[DwfAnalogInFilter]
Get a list of valid AnalogIn channel filter settings.

Returns
A list of valid channel filter settings.

Return type
List[DwfAnalogInFilter]

Raises
DwfLibraryError – An error occurred while getting the channel filter info.

channelFilterSet(channel_index: int, channel_filter: DwfAnalogInFilter)→ None
Set the filter for a specified AnalogIn input channel.

Parameters

• channel_index (int) – The channel index, in the range 0 to channelCount()-1.

• channel_filter (DwfAnalogInFilter) – The channel filter mode to be selected.

Raises
DwfLibraryError – An error occurred while setting the channel filter.

channelFilterGet(channel_index: int)→ DwfAnalogInFilter
Get the AnalogIn input channel filter setting.

Parameters
channel_index (int) – The channel index, in the range 0 to channelCount()-1.

Returns
The currently selected channel filter mode.

Return type
DwfAnalogInFilter

Raises
DwfLibraryError – An error occurred while getting the current channel filter setting.

channelRangeInfo()→ Tuple[float, float, int]
Report the possible voltage range of the AnalogIn input channels, in Volts.

The values returned represent ideal values. The actual calibrated ranges are channel-dependent.

See also:

The channelRangeSteps() method returns essentially the same information in a different represen-
tation.

Returns
The minimum range (Volts), maximum range (Volts), and number of different discrete
channel range settings of the AnalogIn instrument.

Return type
Tuple[float, float, int]

Raises
DwfLibraryError – An error occurred while getting the analog input range setting info.

4.2. Analog input instrument 47

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

channelRangeSet(channel_index: int, channel_range: float)→ None
Set the range setting of the specified AnalogIn input channel, in Volts.

Note: The actual range set will generally be different from the requested range.

Note: Changing the channel range may also change the channel offset.

Parameters

• channel_index (int) – The channel index, in the range 0 to channelCount()-1.

• channel_range (float) – The requested channel range, in Volts.

Raises
DwfLibraryError – An error occurred while setting the channel voltage range.

channelRangeGet(channel_index: int)→ float
Get the range setting of the specified AnalogIn input channel, in Volts.

Together with the channel offset, this value can be used to transform raw binary ADC values into Volts.

Parameters
channel_index (int) – The channel index, in the range 0 to channelCount()-1.

Returns
The actual channel range, in Volts.

Return type
float

Raises
DwfLibraryError – An error occurred while setting the channel voltage range.

channelRangeSteps()→ List[float]
Report the possible voltage ranges of the AnalogIn input channels, in Volts, as a list.

The values returned represent ideal values. The actual calibrated ranges are channel-dependent.

See also:

The channelRangeInfo() method returns essentially the same information in a different representa-
tion.

Returns
A list of ranges, in Volts, representing the discrete channel range settings of the AnalogIn
instrument.

Return type
List[float]

Raises
DwfLibraryError – An error occurred while getting the list of analog input range set-
tings.

channelOffsetInfo()→ Tuple[float, float, int]
Get the possible AnalogIn input channel offset settings, in Volts.

Returns
The minimum channel offset (Volts), maximum channel offset (Volts), and number of
steps.

48 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Return type
Tuple[float, float, int]

Raises
DwfLibraryError – An error occurred while getting the channel offset info.

channelOffsetSet(channel_index: int, channel_offset: float)→ None
Set the AnalogIn input channel offset, in Volts.

Note: The actual offset will generally be different from the requested offset.

Note: Changing the channel offset may also change the channel range.

Parameters

• channel_index (int) – The channel index, in the range 0 to channelCount()-1.

• channel_offset (float) – The channel offset, in Volts.

Raises
DwfLibraryError – An error occurred while setting the channel offset.

channelOffsetGet(channel_index: int)→ float
Get the AnalogIn input channel offset, in Volts.

Together with the channel range, this value can be used to transform raw binary ADC values into Volts.

Parameters
channel_index (int) – The channel index, in the range 0 to channelCount()-1.

Returns
The currently configured channel offset, in Volts.

Return type
float

Raises
DwfLibraryError – An error occurred while getting the current channel offset setting.

channelAttenuationSet(channel_index: int, channel_attenuation: float)→ None
Set the AnalogIn input channel attenuation setting.

The channel attenuation is a dimensionless factor.

This setting is used to compensate for probe attenuation. Many probes have two attenuation settings
(e.g., ×1 and ×10). The value of this setting should correspond to the value of the probe, or 1 (the
default) if a direct connection without attenuation is used.

Note: Changing the channel attenuation will also change the channel offset and range.

Parameters

• channel_index (int) – The channel index, in the range 0 to channelCount()-1.

• channel_attenuation (float) – The requested channel attenuation setting. If it is
0.0, the attenuation is set to 1.0 (the default) instead.

Raises
DwfLibraryError – An error occurred while setting the current channel attenuation.

4.2. Analog input instrument 49

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

channelAttenuationGet(channel_index: int)→ float
Get the AnalogIn input channel attenuation setting.

The channel attenuation is a dimensionless factor.

This setting is used to compensate for probe attenuation. Many probes have two attenuation settings
(e.g., ×1 and ×10). The value of this setting should correspond to the value of the probe, or 1 (the
default) if a direct connection without attenuation is used.

Parameters
channel_index (int) – The channel index, in the range 0 to channelCount()-1.

Returns
The channel attenuation setting.

Return type
float

Raises
DwfLibraryError – An error occurred while getting the current channel attenuation.

channelBandwidthSet(channel_index: int, channel_bandwidth: float)→ None
Set the AnalogIn input channel bandwidth setting.

Note: On the Analog Discovery 2, the channel bandwidth setting exists and can be set and retrieved,
but the value has no effect.

Parameters

• channel_index (int) – The channel index, in the range 0 to channelCount()-1.

• channel_bandwidth (float) – The channel bandwidth setting, in Hz.

Raises
DwfLibraryError – An error occurred while setting the channel bandwidth.

channelBandwidthGet(channel_index: int)→ float
Get the AnalogIn input channel bandwidth setting.

Note: On the Analog Discovery 2, the channel bandwidth setting exists and can be set and retrieved,
but the value has no effect.

Parameters
channel_index (int) – The channel index, in the range 0 to channelCount()-1.

Returns
The channel bandwidth setting, in Hz.

Return type
float

Raises
DwfLibraryError – An error occurred while getting the current channel bandwidth.

channelImpedanceSet(channel_index: int, channel_impedance: float)→ None
Set the AnalogIn input channel impedance setting, in Ohms.

Note: On the Analog Discovery 2, the channel impedance setting exists and can be set and retrieved,
but the value has no effect.

50 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

pydwf, Release 1.1.19

Parameters

• channel_index (int) – The channel index, in the range 0 to channelCount()-1.

• channel_impedance (float) – channel impedance setting, in Ohms.

Raises
DwfLibraryError – An error occurred while setting the current channel impedance.

channelImpedanceGet(channel_index: int)→ float
Get the AnalogIn input channel impedance setting, in Ohms.

Note: On the Analog Discovery 2, the channel impedance setting exists and can be set and retrieved,
but the value has no effect.

Parameters
channel_index (int) – The channel index, in the range 0 to channelCount()-1.

Returns
The channel impedance setting, in Ohms.

Return type
float

Raises
DwfLibraryError – An error occurred while getting the current channel impedance.

channelCouplingInfo()→ List[DwfAnalogCoupling]
Get the AnalogIn channel coupling info.

Raises
DwfLibraryError – An error occurred while getting the channel coupling info.

channelCouplingSet(channel_index: int, channel_coupling: DwfAnalogCoupling)→ None
Set the AnalogIn input channel coupling.

Parameters

• channel_index (int) – The channel index, in the range 0 to channelCount()-1.

• channel_coupling (AnalogCoupling) – channel coupling to be set.

Raises
DwfLibraryError – An error occurred while setting the current channel coupling.

channelCouplingGet(channel_index: int)→ DwfAnalogCoupling
Get the AnalogIn input channel impedance setting, in Ohms.

Parameters
channel_index (int) – The channel index, in the range 0 to channelCount()-1.

Returns
The channel coupling (DC or AC).

Return type
DwfAnalogCoupling

Raises
DwfLibraryError – An error occurred while getting the current channel impedance.

triggerSourceInfo()→ List[DwfTriggerSource]
Get the AnalogIn instrument trigger source info.

4.2. Analog input instrument 51

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List

pydwf, Release 1.1.19

Warning: This method is obsolete.

Use the generic DwfDevice.triggerInfo() method instead.

Returns
A list of trigger sources that can be selected.

Return type
List[DwfTriggerSource]

Raises
DwfLibraryError – An error occurred while retrieving the trigger source information.

triggerSourceSet(trigger_source: DwfTriggerSource)→ None
Set the AnalogIn instrument trigger source.

Parameters
trigger_source (DwfTriggerSource) – The trigger source to be selected.

Raises
DwfLibraryError – An error occurred while setting the trigger source.

triggerSourceGet()→ DwfTriggerSource
Get the currently selected instrument trigger source.

Returns
The currently selected trigger source.

Return type
DwfTriggerSource

Raises
DwfLibraryError – An error occurred while retrieving the selected trigger source.

triggerPositionInfo()→ Tuple[float, float, int]
Get the AnalogIn instrument trigger position range.

Returns
The valid range of trigger positions that can be configured. The values returned are the
minimum and maximum valid position settings, and the number of steps.

Return type
Tuple[float, float, int]

Raises
DwfLibraryError – An error occurred while retrieving the trigger position info.

triggerPositionSet(trigger_position: float)→ None
Set the AnalogIn instrument trigger position, in seconds.

The meaning of the trigger position depends on the currently selected acquisition mode:

• In Record acquisition mode, the trigger position is the time of the first valid sample acquired
relative to the position of the trigger event. Negative values indicates times before the trigger time.

To place the trigger in the middle of the recording, this value should be set to -0.5 times the duration
of the recording.

• In Single acquisition mode, the trigger position is the trigger event time relative to the center of
the acquisition window.

To place the trigger in the middle of the acquisition buffer, the value should be 0.

Parameters
trigger_position (float) – The trigger position to be configured, in seconds.

52 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

Raises
DwfLibraryError – An error occurred while setting the trigger position.

triggerPositionGet()→ float
Get the AnalogIn instrument trigger position, in seconds.

Returns
The currently configured trigger position, in seconds.

Return type
float

Raises
DwfLibraryError – An error occurred while getting the trigger position.

triggerPositionStatus()→ float
Get the current AnalogIn instrument trigger position status.

Returns
The current trigger position, in seconds.

Return type
float

Raises
DwfLibraryError – An error occurred while getting the trigger position status.

triggerAutoTimeoutInfo()→ Tuple[float, float, int]
Get the AnalogIn instrument trigger auto-timeout range, in seconds.

Returns
The valid range of trigger auto-timeout values that can be configured. The values returned
are the minimum and maximum valid auto-timeout settings, and the number of steps.

Return type
Tuple[float, float, int]

Raises
DwfLibraryError – An error occurred while getting the trigger auto-timeout info.

triggerAutoTimeoutSet(trigger_auto_timeout: float)→ None
Set the AnalogIn instrument trigger auto-timeout value, in seconds.

When set to 0, the trigger auto-timeout feature is disabled, corresponding to Normal acquisition mode
on desktop oscilloscopes.

Parameters
trigger_auto_timeout (float) – The auto timeout setting, in seconds.

Raises
DwfLibraryError – An error occurred while setting the trigger auto-timeout value.

triggerAutoTimeoutGet()→ float
Get the AnalogIn instrument trigger auto-timeout value, in seconds.

Returns
The currently configured auto-timeout value, in seconds.

Return type
float

Raises
DwfLibraryError – An error occurred while getting the trigger auto-timeout value.

4.2. Analog input instrument 53

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

triggerForce()→ None
Force assertion of the AnalogIn instrument trigger.

Important: This method forces the AnalogIn device to act as if it was triggered, independent of the
currently active trigger source. It does not generate an artificial trigger event on the AnalogIn trigger
detector.

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerHoldOffInfo()→ Tuple[float, float, int]
Get the AnalogIn trigger detector holdoff range, in seconds.

The trigger holdoff setting is the minimum time (in seconds) that should pass for a trigger to be recog-
nized by the trigger detector after a previous trigger event.

Returns
The valid range of trigger detector holdoff values that can be configured. The values
returned are the minimum and maximum valid holdoff settings, and the number of steps.

Return type
Tuple[float, float, int]

Raises
DwfLibraryError – An error occurred while getting the trigger holdoff info.

triggerHoldOffSet(trigger_detector_holdoff: float)→ None
Set the AnalogIn trigger detector holdoff value, in seconds.

Parameters
trigger_detector_holdoff (float) – The trigger holdoff setting, in seconds.

The value 0 disables the trigger detector holdoff feature.

Raises
DwfLibraryError – An error occurred while setting the trigger detector holdoff value.

triggerHoldOffGet()→ float
Get the current AnalogIn trigger holdoff value, in seconds.

Returns
The currently configured trigger holdoff value, in seconds.

Return type
float

Raises
DwfLibraryError – An error occurred while getting the trigger holdoff value.

triggerTypeInfo()→ List[DwfAnalogInTriggerType]
Get the valid AnalogIn trigger detector trigger-type values.

This setting determines the type of event recognized by the AnalogIn trigger detector as a trigger.
Possible types includes Edge, Pulse, Transition, and Window.

Returns
A list of trigger detector trigger-types that can be configured.

Return type
List[DwfAnalogInTriggerType]

Raises
DwfLibraryError – An error occurred while getting the trigger detector trigger-type
info.

54 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List

pydwf, Release 1.1.19

triggerTypeSet(trigger_detector_type: DwfAnalogInTriggerType)→ None
Set the AnalogIn trigger detector trigger-type.

Parameters
trigger_detector_type (DwfAnalogInTriggerType) – The trigger detector trigger-
type to be configured.

Raises
DwfLibraryError – An error occurred while setting the trigger detector trigger-type.

triggerTypeGet()→ DwfAnalogInTriggerType
Get the currently configured AnalogIn trigger detector trigger-type.

Returns
The currently configured trigger detector trigger-type.

Return type
DwfAnalogInTriggerType

Raises
DwfLibraryError – An error occurred while getting the trigger detector trigger-type.

triggerChannelInfo()→ Tuple[int, int]
Get the AnalogIn trigger detector channel range.

The AnalogIn trigger detector monitors a specific analog in channel for trigger events. This method
returns the range of valid analog input channels that can be configured as the AnalogIn trigger detector
channel.

Returns
The first and last channel that can be used as trigger detector channels.

Return type
Tuple[int, int]

Raises
DwfLibraryError – An error occurred while getting the trigger detector channel range.

triggerChannelSet(trigger_detector_channel_index: int)→ None
Set the AnalogIn trigger detector channel.

This is the analog input channel that the AnalogIn trigger detector monitors for trigger events.

Parameters
trigger_detector_channel_index (int) – The trigger detector channel to be se-
lected.

Raises
DwfLibraryError – An error occurred while setting the trigger detector channel.

triggerChannelGet()→ int
Get the AnalogIn trigger detector channel.

This is the analog input channel that the AnalogIn trigger detector monitors for trigger events.

Returns
The currently configured trigger detector channel.

Return type
int

Raises
DwfLibraryError – An error occurred while getting the trigger detector channel.

triggerFilterInfo()→ List[DwfAnalogInFilter]
Get a list of valid AnalogIn trigger detector filter values.

4.2. Analog input instrument 55

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List

pydwf, Release 1.1.19

Returns
A list of filters that can be configured for the trigger detector channel.

Return type
List[DwfAnalogInFilter]

Raises
DwfLibraryError – An error occurred while getting the valid trigger detector channel
filter values.

triggerFilterSet(trigger_detector_filter: DwfAnalogInFilter)→ None
Set the AnalogIn trigger detector channel filter.

Parameters
trigger_detector_filter (DwfAnalogInFilter) – The trigger detector channel fil-
ter to be selected.

Raises
DwfLibraryError – An error occurred while setting the trigger detector channel filter.

triggerFilterGet()→ DwfAnalogInFilter
Get the AnalogIn trigger detector channel filter.

Returns
The currently configured trigger detector channel filter.

Return type
DwfAnalogInFilter

Raises
DwfLibraryError – An error occurred while getting the trigger detector channel filter.

triggerLevelInfo()→ Tuple[float, float, int]
Get the AnalogIn trigger detector valid trigger level range, in Volts.

Returns
The range of valid trigger levels that can be configured. The values returned are the
minimum and maximum trigger levels in Volts, and the number of steps.

Return type
Tuple[float, float, int]

Raises
DwfLibraryError – An error occurred while getting the trigger level range.

triggerLevelSet(trigger_detector_level: float)→ None
Set the AnalogIn trigger detector trigger-level, in Volts.

Parameters
trigger_detector_level (float) – The trigger level to be configured, in Volts.

Raises
DwfLibraryError – An error occurred while setting the trigger level.

triggerLevelGet()→ float
Get the AnalogIn trigger detector trigger-level, in Volts.

Returns
The currently configured trigger level, in Volts.

Return type
float

Raises
DwfLibraryError – An error occurred while getting the trigger level.

56 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

triggerHysteresisInfo()→ Tuple[float, float, int]
Get the AnalogIn trigger detector valid hysteresis range, in Volts.

Returns
The valid range of trigger hysteresis values that can be configured. The values returned
are the minimum and maximum trigger hysteresis levels in Volts, and the number of steps.

Return type
Tuple[float, float, int]

Raises
DwfLibraryError – An error occurred while getting the trigger hysteresis info.

triggerHysteresisSet(trigger_detector_hysteresis: float)→ None
Set the AnalogIn trigger detector hysteresis, in Volts.

Parameters
trigger_detector_hysteresis (float) – The trigger hysteresis to be configured, in
Volts.

Raises
DwfLibraryError – An error occurred while setting the trigger hysteresis.

triggerHysteresisGet()→ float
Get the AnalogIn trigger detector trigger hysteresis, in Volts.

Returns
The currently configured trigger hysteresis, in Volts.

Return type
float

Raises
DwfLibraryError – An error occurred while getting the trigger hysteresis.

triggerConditionInfo()→ List[DwfTriggerSlope]
Get the valid AnalogIn trigger detector condition (slope) options.

Returns
A list of valid trigger detector condition (slope) values.

Return type
List[DwfTriggerSlope]

Raises
DwfLibraryError – An error occurred while getting the valid trigger detector condition
values.

triggerConditionSet(trigger_detector_condition: DwfTriggerSlope)→ None
Set the AnalogIn trigger detector condition (slope).

Parameters
trigger_detector_condition (DwfTriggerSlope) – The trigger detector condition
(slope) to be configured.

Raises
DwfLibraryError – An error occurred while setting the trigger condition.

triggerConditionGet()→ DwfTriggerSlope
Get the AnalogIn trigger detector condition (slope).

Returns
The currently configured trigger condition (slope).

Return type
DwfTriggerSlope

4.2. Analog input instrument 57

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None

pydwf, Release 1.1.19

Raises
DwfLibraryError – An error occurred while setting the trigger condition (slope).

triggerLengthInfo()→ Tuple[float, float, int]
Get the valid AnalogIn trigger detector length range, in seconds.

Returns
The valid range of trigger detector length values that can be configured. The values re-
turned are the minimum and maximum trigger detector length values in seconds, and the
number of steps.

Return type
Tuple[float, float, int]

Raises
DwfLibraryError – An error occurred while getting the trigger length range.

triggerLengthSet(trigger_detector_length: float)→ None
Set the AnalogIn trigger detector length, in seconds.

Parameters
trigger_detector_length (float) – The trigger detector trigger length to be config-
ured, in seconds.

Raises
DwfLibraryError – An error occurred while setting the trigger detector length.

triggerLengthGet()→ float
Get the AnalogIn trigger detector length, in seconds.

Returns
The currently configured trigger detector trigger length, in seconds.

Return type
float

Raises
DwfLibraryError – An error occurred while getting the trigger detector length.

triggerLengthConditionInfo()→ List[DwfAnalogInTriggerLengthCondition]
Get a list of valid AnalogIn trigger detector length condition values.

Trigger length condition values include Less, Timeout, and More.

Returns
A list of valid trigger detector length condition values.

Return type
List[DwfAnalogInTriggerLengthCondition]

Raises
DwfLibraryError – An error occurred while getting the trigger length condition info.

triggerLengthConditionSet(trigger_detector_length_condition:
DwfAnalogInTriggerLengthCondition)→ None

Set the AnalogIn trigger detector length condition.

Parameters
trigger_detector_length_condition (DwfAnalogInTriggerLengthCondition)
– The trigger detector length condition to be configured.

Raises
DwfLibraryError – An error occurred while setting the trigger detector length condi-
tion.

58 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None

pydwf, Release 1.1.19

triggerLengthConditionGet()→ DwfAnalogInTriggerLengthCondition
Get the AnalogIn trigger detector length condition.

Returns
The currently configured trigger detector length condition.

Return type
DwfAnalogInTriggerLengthCondition

Raises
DwfLibraryError – An error occurred while getting the trigger detector length condi-
tion.

counterInfo()→ Tuple[int, float]
Get AnalogIn counter info.

counterSet(duration: float)→ None
Set AnalogIn counter duration.

counterGet()→ float
Get AnalogIn counter duration.

counterStatus()→ Tuple[float, float, int]
Get AnalogIn counter status.

samplingSourceSet(sampling_source: DwfTriggerSource)→ None
Set the AnalogIn sampling source.

Parameters
sampling_source (DwfTriggerSource) – The sampling source to be configured.

Raises
DwfLibraryError – An error occurred while setting the sampling source.

samplingSourceGet()→ DwfTriggerSource
Get the AnalogIn sampling source.

Returns
The currently configured sampling source.

Return type
DwfTriggerSource

Raises
DwfLibraryError – An error occurred while getting the sampling source.

samplingSlopeSet(sampling_slope: DwfTriggerSlope)→ None
Set the AnalogIn sampling slope.

Parameters
sampling_slope (DwfTriggerSlope) – The sampling slope to be configured.

Raises
DwfLibraryError – An error occurred while setting the sampling slope.

samplingSlopeGet()→ DwfTriggerSlope
Get the AnalogIn sampling slope.

Returns
The currently configured sampling slope.

Return type
DwfTriggerSlope

Raises
DwfLibraryError – An error occurred while getting the sampling slope.

4.2. Analog input instrument 59

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

pydwf, Release 1.1.19

samplingDelaySet(sampling_delay: float)→ None
Set the AnalogIn sampling delay, in seconds.

Parameters
sampling_delay (float) – The sampling delay to be configured, in seconds.

Raises
DwfLibraryError – An error occurred while setting the sampling delay.

samplingDelayGet()→ float
Get the AnalogIn sampling delay, in seconds.

Returns
The currently configured sampling delay, in seconds.

Return type
float

Raises
DwfLibraryError – An error occurred while getting the sampling delay.

property device

Return the DwfDevice instance of which we are an attribute.

This is useful if we have a variable that contains a reference to a DwfDevice attribute, but we need the
DwfDevice itself.

Returns
The DwfDevice instance that this attribute belongs to.

Return type
DwfDevice

4.3 Analog output instrument

The AnalogOut instrument provides multiple channels of analog output on devices that support it, such as the
Analog Discovery and the Analog Discovery 2. It provides the functionality normally associated with a stand-
alone arbitrary waveform generator.

Todo: This section is currently incomplete.

It lacks a detailed discussion of how all the settings work.

Important: The AnalogOut channels are designed to be capable of operating independently.

To that end, each AnalogOut channel has its own settings and state, and its behavior is fully independent from the
behavior of the other analog output channels, unless explicitly commanded using the AnalogOut.masterSet()
method.

Because of this, each AnalogOut channel can be considered a fully independent instrument.

60 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

4.3.1 Using the analog output instrument

To use the AnalogOut instrument you first need to initialize a DwfLibrary instance. Next, you open a specific
device. The device’s AnalogOut instrument can now be accessed via its analogOut attribute, which is an instance
of the AnalogOut class.

For example:

from pydwf import DwfLibrary
from pydwf.utilities import openDwfDevice

dwf = DwfLibrary()

with openDwfDevice(dwf) as device:

Get a reference to the device's AnalogOut instrument.
analogOut = device.analogOut

Use the AnalogOut instrument: reset all output channels.
analogOut.reset(-1)

4.3.2 The AnalogOut channel state machine

Each AnalogOut channel is controlled by a state machine. As an output sequence is prepared and executed, the
channel goes through its various states.

The current state of the channel is returned by the analogOut.status() method, and is of type DwfState.

The figure below shows the states used by the AnalogOut instrument and the transitions between them:

Fig. 2: States of the AnalogOut instrument

The AnalogOut states are used as follows:

1. Ready

In this preparatory state, channel settings can be changed that specify the behavior of the channel in the
coming output sequence. If the auto-configure setting of the device is enabled (the default), setting changes
will automatically be transferred to the device. If not, an explicit call to the analogOut.configure()
method is needed to transfer updated settings to the device.

Once the channel is properly configured, an output sequence can be started by calling the analogOut.
configure() with the start parameter set to True. This will start the first stage of the output sequence by
entering the Armed state.

2. Armed

In this state the channel continuously monitors the configured trigger input. As soon as a trigger event is
detected, the instrument proceeds to the Wait state.

3. Wait

In this state, the analog output is driven according to the channel’s Idle setting. The duration of the wait state
is configurable. Once this duration has passed, the channel proceeds to the Running state.

4. Running

In this state the channel drives its output according to its node settings. This continues until the run duration
has been reached. The channel then proceeds to the Repeat state.

5. Repeat

4.3. Analog output instrument 61

pydwf, Release 1.1.19

Note: This is not a true state, in that there is no DwfState value that represents it. It is included
here to explain the control flow of the AnalogOut channel state machine.

When an output run is finished, the repeat count is decremented.

If, after decrementing, the repeat count is unequal to zero, more output must be produced. If the
repeat trigger setting is True, the channel proceeds to the Armed state; in that case, a trigger is
needed to start each of the output runs. If the repeat trigger setting is False, the channel proceeds
immediately to the Wait state to start another output sequence; a trigger is only required before
the very first output run.

If, after decrementing, the repeat count did reach zero, the channel becomes idle and proceeds to
the Done state.

6. Done

This state indicates that an output sequence has finished. In this state, the analog output is driven according
to the channel’s Idle setting.

From this state, it is possible to go back to the Ready state by performing any kind of configuration, or to
start a new output sequence.

4.3.3 AnalogOut channel nodes

AnalogOut channels are organized in nodes, which can be independently configured. A node represent either the
primary non-modulated signal (the Carrier), or some form of modulation, like Amplitude Modulation (AM) or
Frequency Modulation (FM). The output of each node varies over time according to its settings. The node outputs
are combined to synthesize the signal that is driven onto the analog output channel via a DAC.

Note: Early versions of the library only implemented the Carrier signal and lacked modulation support. With the
introduction of AM and FM modulation, the node concept was introduced. Because of this, there are 24 methods
that configure the carrier signal directly, but also 24 methods that configure a selectable node. In new user programs,
only the latter should be used.

The nodes of an analog output channel can be configured independently. The contribution of nodes can be individ-
ually enabled or disabled, which is most useful for the AM and FM nodes. For nodes that are enabled, a number of
standard waveform shape functions are available, such as sine, block, triangle, and ramp. These can be modified by
controlling their offset, amplitude, frequency, phase, and symmetry; the latter alters the waveform from its regular,
symmetrical shape.

62 Chapter 4. The DwfDevice class and its attributes

pydwf, Release 1.1.19

0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0
DC

0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0
Sine

0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0
Square

0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

sig
na

l [
-]

Triangle

0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0
RampUp

0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0
RampDown

0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0
Pulse

0.00 0.25 0.50 0.75 1.00
time [period]

1.0

0.5

0.0

0.5

1.0
Trapezium

0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0
SinePower

DwfAnalogOutFunction waveforms
symmetry = +50

It is also possible to upload an arbitrary wave-shape to the instrument as a sequence of samples to be played. This
can be used for short wave-shapes, but it is also possible to perform continuous playback by uploading blocks of
samples in a loop.

4.3.4 AnalogOut instrument API overview

With 83 methods, the AnalogOut instrument is the second most complicated instrument supported by the Digilent
Waveforms API, after the AnalogIn instrument. Below, we categorize all its methods and shortly introduce them.
Detailed information on all methods can be found in the AnalogOut class reference that follows.

Instrument control

Like all instruments supported by the Digilent Waveforms library, the AnalogOut instrument provides reset(),
configure(), and status() methods.

The AnalogOut instrument is unusual in that these methods operate on individual AnalogOut channels, meaning
that each AnalogOut channel acts as as a separate, independent instrument.

The reset() method resets a specific analog output channel (or all channels).

The configure() method is used to explicitly transfer settings to the instrument, and/or to start a configured
operation.

The status() method retrieves status information from the instrument. It returns the current DwfState of the
AnalogOut instrument.

4.3. Analog output instrument 63

pydwf, Release 1.1.19

Table 12: Instrument control (3 methods)

control operation type/unit methods
reset instrument n/a reset()
configure instrument n/a configure()
request instrument status DwfState status()

Channel count

This method returns the number of analog output channels.

Table 13: Channel count (1 method)

property type/unit method
channel count int count()

Per-channel state machine settings

These settings determine the duration of the Wait and Running states, how many times the Wait/Running cycle
should be repeated, and whether a trigger must precede each Wait/Running cycle.

The channel master setting allows an analog output channel to be controlled by another channel, synchronizing
their behavior.

Table 14: State machine settings (15 methods)

setting type/unit methods
wait duration float [s] waitInfo() , –Set() , –Get()
run duration float [s] runInfo() , –Set() , –Get() , –Status()
repeat count int [-] repeatInfo() , –Set() , –Get() , –Status()
repeat trigger bool repeatTriggerSet() , –Get()
channel master int masterSet() , –Get()

Per-channel trigger configuration

These settings configure the channel trigger.

Table 15: Per-channel trigger configuration (5 methods)

setting type/unit methods
trigger source DwfTriggerSource triggerSourceInfo() , –Set() , –Get()
trigger slope DwfTriggerSlope triggerSlopeSet() , –Get()

Note: The triggerSourceInfo() method is obsolete. Use the generic DwfDevice.triggerInfo() method
instead.

64 Chapter 4. The DwfDevice class and its attributes

pydwf, Release 1.1.19

Per-channel output settings

These settings determine the channel output behavior.

Table 16: Per-channel output settings (8 methods)

setting type/unit methods
channel mode DwfAnalogOutMode modeSet() , –Get()
channel idle DwfAnalogOutIdle idleInfo() , –Set() , –Get()
channel limitation float [V] or [A] limitationInfo() , –Set() , –Get()

Per-channel miscellaneous settings

The function of the custom AM/FM enable setting is currently not understood. It is only applicable to Electronics
Explorer devices, as stated in a message on the Digilent forum.

Todo: Figure out what the custom AM/FM enable setting does.

Table 17: Per-channel configuration (2 methods)

setting type/unit methods
custom AM/FM enable bool customAMFMEnableSet() , –Get()

Node enumeration

This method enumerates all nodes of an AnalogOut channel.

Table 18: Node enumeration (1 method)

property type/unit methods
node enumeration DwfAnalogOutNode list nodeInfo()

Node configuration

These methods configure the output signal of an AnalogOut channel node.

Table 19: Node configuration (20 methods)

setting type/unit methods
node enable bool nodeEnableSet() , –Get()
node function DwfAnalogOutFunction nodeFunctionInfo() , –Set() , –Get()
node frequency float [Hz] nodeFrequencyInfo() , –Set() , –Get()
node amplitude float [V] nodeAmplitudeInfo() , –Set() , –Get()
node offset float [V] | nodeOffsetInfo() , –Set() , –Get()
node symmetry float [%] | nodeSymmetryInfo() , –Set() , –Get()
node phase float [deg] nodePhaseInfo() , –Set() , –Get()

4.3. Analog output instrument 65

https://digilent.com/reference/test-and-measurement/electronics-explorer/start
https://digilent.com/reference/test-and-measurement/electronics-explorer/start
https://forum.digilentinc.com/topic/22281-installation-of-waveforms-on-linux-amd64-runs-into-dependency-problem/#comment-64663

pydwf, Release 1.1.19

Node data management

These methods transfer arbitrary waveform data to an AnalogOut channel node.

Table 20: Node data management (4 methods)

operation type/unit methods
node data upload n/a nodeDataInfo() , –Set()
node play status n/a nodePlayStatus()
node play data upload n/a nodePlayData()

Carrier configuration (obsolete)

Note: These methods have been replaced by equivalent node methods.

Table 21: Carrier configuration (20 methods)

setting type/unit methods
carrier enable bool enableSet() , –Get()
carrier function DwfTriggerSource functionInfo() , –Set() , –Get()
carrier frequency float [Hz] frequencyInfo() , –Set() , –Get()
carrier amplitude float [V] amplitudeInfo() , –Set() , –Get()
carrier offset float [V] offsetInfo() , –Set() , –Get()
carrier symmetry float [%] symmetryInfo() , –Set() , –Get()
carrier phase float [deg] phaseInfo() , –Set() , –Get()

Carrier node data management (obsolete)

Note: These methods have been replaced by equivalent node methods.

Table 22: Carrier data management (4 methods)

operation type/unit methods
carrier data upload n/a dataInfo() , –Set()
carrier play status n/a playStatus()
carrier play data upload n/a playData()

4.3.5 AnalogOut reference

class AnalogOut

The AnalogOut class provides access to the analog output (signal generator) instrument of a DwfDevice.

Attention: Users of pydwf should not create instances of this class directly.

It is instantiated during initialization of a DwfDevice and subsequently assigned to its public analogOut
attribute for access by the user.

reset(channel_index: int)→ None
Reset the AnalogOut instrument.

66 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

pydwf, Release 1.1.19

Raises
DwfLibraryError – An error occurred while executing the reset operation.

configure(channel_index: int, start: int)→ None
Configure the AnalogOut instrument.

Parameters

• channel_index (int) – The output channel to configure. Specify -1 to configure all
channels.

• start (int) – Whether to start/stop the instrument:

– 0 — Stop instrument

– 1 — Start instrument

– 3 — Apply settings; do not change instrument state

Raises
DwfLibraryError – An error occurred while executing the configure operation.

status(channel_index: int)→ DwfState
Get the AnalogOut instrument channel state.

This method performs a status request to the AnalogOut instrument and receives its response.

Parameters
channel_index (int) – The output channel for which to get the status.

Returns
The status of the AnalogOut instrument channel.

Return type
DwfState

Raises
DwfLibraryError – An error occurred while executing the status operation.

count()→ int
Count the number of analog output channels.

Returns
The number of analog output channels.

Return type
int

Raises
DwfLibraryError – An error occurred while retrieving the number of analog output
channels.

waitInfo(channel_index: int)→ Tuple[float, float]
Get the AnalogOut channel valid Wait state duration range, in seconds.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The range of configurable Wait state durations, in seconds.

Return type
Tuple[float, float]

Raises
DwfLibraryError – An error occurred while executing the operation.

4.3. Analog output instrument 67

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

waitSet(channel_index: int, wait_duration: float)→ None
Set the AnalogOut channel Wait state duration, in seconds.

Parameters

• channel_index (int) – The AnalogOut channel.

• wait_duration (float) – The Wait state duration, in seconds.

Raises
DwfLibraryError – An error occurred while executing the operation.

waitGet(channel_index: int)→ float
Get the AnalogOut channel Wait state duration, in seconds.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The currently configured Wait state duration.

Return type
float

Raises
DwfLibraryError – An error occurred while executing the operation.

runInfo(channel_index: int)→ Tuple[float, float]
Get the AnalogOut channel valid Running state duration range, in seconds.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The range of allowed Running state durations, in seconds.

Return type
Tuple[float, float]

Raises
DwfLibraryError – An error occurred while executing the operation.

runSet(channel_index: int, run_duration: float)→ None
Set the AnalogOut channel Running state duration, in seconds.

Parameters

• channel_index (int) – The AnalogOut channel.

• run_duration (float) – The Running state duration, in seconds. Specify 0 for a
run of indefinite length.

Raises
DwfLibraryError – An error occurred while executing the operation.

runGet(channel_index: int)→ float
Get the AnalogOut channel Running state duration, in seconds.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The currently configured Running state duration, in seconds.

Return type
float

Raises
DwfLibraryError – An error occurred while executing the operation.

68 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

runStatus(channel_index: int)→ float
Get Running state duration time left.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The current time remaining in the Running state, in seconds.

Return type
float

Raises
DwfLibraryError – An error occurred while executing the operation.

repeatTriggerSet(channel_index: int, repeat_trigger_flag: bool)→ None
Set the AnalogOut channel repeat trigger setting.

This setting determines if a new trigger must precede all Wait/Running sequences, or only the first one.

Parameters

• channel_index (int) – The AnalogOut channel.

• repeat_trigger_flag (bool) – True if each Wait/Running sequence needs its own
trigger, False if only the first Wait/Running sequence needs a trigger.

Raises
DwfLibraryError – An error occurred while executing the operation.

repeatTriggerGet(channel_index: int)→ bool
Get the AnalogOut channel repeat trigger setting.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The currently configured repeat trigger setting.

Return type
bool

Raises
DwfLibraryError – An error occurred while executing the operation.

repeatInfo(channel_index: int)→ Tuple[int, int]
Get AnalogOut repeat count range.

The repeat count is the number of times the AnalogOut channel will go through the Wait/Running or
Armed/Wait/Running state cycles during the output sequence.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The range of configurable repeat values.

Return type
Tuple[int, int]

Raises
DwfLibraryError – An error occurred while executing the operation.

repeatSet(channel_index: int, repeat: int)→ None
Set the AnalogOut repeat count.

The repeat count is the number of times the AnalogOut channel will go through the Wait/Running or
Armed/Wait/Running state cycles during the output sequence.

4.3. Analog output instrument 69

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

pydwf, Release 1.1.19

Parameters

• channel_index (int) – The AnalogOut channel.

• repeat (int) – The repeat count. If 0, repeat indefinitely.

Raises
DwfLibraryError – An error occurred while executing the operation.

repeatGet(channel_index: int)→ int
Get the AnalogOut repeat count.

The repeat count is the number of times the AnalogOut channel will go through the Wait/Running or
Armed/Wait/Running state cycles during the output sequence.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The currently configured repeat value. 0 means: repeat indefinitely.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

repeatStatus(channel_index: int)→ int
Get the AnalogOut current repeat count, which decreases to 0 while going through Running/Wait state
cycles.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The current repeat count value.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

masterSet(channel_index: int, master_channel_index: int)→ None
Set the AnalogOut channel master.

Sets the state machine master channel of the analog output channel.

Parameters

• channel_index (int) – The output channel for which to set the master setting. Spec-
ify -1 to set all channels.

• master_channel_index (int) – The master channel.

Raises
DwfLibraryError – An error occurred while setting the value.

masterGet(channel_index: int)→ int
Get the AnalogOut channel master.

Parameters
channel_index (int) – The analog output channel for which to get the master channel.

Returns
The index of the master channel which the channel is configured to follow.

Return type
int

70 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Raises
DwfLibraryError – An error occurred while getting the value.

triggerSourceInfo()→ List[DwfTriggerSource]
Get a list of valid AnalogOut instrument trigger sources.

Warning: This method is obsolete.

Use the generic DwfDevice.triggerInfo() method instead.

Returns
The list of DwfTriggerSource values that can be configured.

Return type
List[DwfTriggerSource]

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerSourceSet(channel_index: int, trigger_source: DwfTriggerSource)→ None
Set the AnalogOut channel trigger source.

Parameters

• channel_index (int) – The AnalogOut channel.

• trigger_source (DwfTriggerSource) – The trigger source to be selected.

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerSourceGet(channel_index: int)→ DwfTriggerSource
Get the currently selected channel trigger source.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The currently selected channel trigger source.

Return type
DwfTriggerSource

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerSlopeSet(channel_index: int, trigger_slope: DwfTriggerSlope)→ None
Select the AnalogOut channel trigger slope.

Parameters

• channel_index (int) – The AnalogOut channel.

• trigger_slope (DwfTriggerSlope) – The trigger slope to be selected.

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerSlopeGet(channel_index: int)→ DwfTriggerSlope
Get the currently selected AnalogOut channel trigger slope.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The currently selected AnalogOut channel trigger slope.

4.3. Analog output instrument 71

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Return type
DwfTriggerSlope

Raises
DwfLibraryError – An error occurred while executing the operation.

modeSet(channel_index: int, mode: DwfAnalogOutMode)→ None
Set the AnalogOut channel mode (voltage or current).

Parameters

• channel_index (int) – The AnalogOut channel.

• mode (DwfAnalogOutMode) – The analog output mode to configure.

Raises
DwfLibraryError – An error occurred while executing the operation.

modeGet(channel_index: int)→ DwfAnalogOutMode
Get the AnalogOut channel mode (voltage or current).

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The currently configured analog output mode.

Return type
DwfAnalogOutMode

Raises
DwfLibraryError – An error occurred while executing the operation.

idleInfo(channel_index: int)→ List[DwfAnalogOutIdle]
Get the valid AnalogOut channel idle settings.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
A list of options for the channel behavior when idle.

Return type
List[DwfAnalogOutIdle]

Raises
DwfLibraryError – An error occurred while executing the operation.

idleSet(channel_index: int, idle: DwfAnalogOutIdle)→ None
Set the AnalogOut channel idle behavior.

Parameters

• channel_index (int) – The AnalogOut channel.

• idle (DwfAnalogOutIdle) – The idle behavior setting to be configured.

Raises
DwfLibraryError – An error occurred while executing the operation.

idleGet(channel_index: int)→ DwfAnalogOutIdle
Get the AnalogOut channel idle behavior.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The AnalogOut channel idle behavior setting.

72 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Return type
DwfAnalogOutIdle

Raises
DwfLibraryError – An error occurred while executing the operation.

limitationInfo(channel_index: int)→ Tuple[float, float]
Get the AnalogOut channel limitation range, in Volts or Amps.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The range of limitation values that can be configured.

Return type
Tuple[float, float]

Raises
DwfLibraryError – An error occurred while executing the operation.

limitationSet(channel_index: int, limitation: float)→ None
Set the AnalogOut channel limitation value, in Volts or Amps.

Parameters

• channel_index (int) – The AnalogOut channel.

• limitation (float) – The limitation value, in Volts or Amps.

Raises
DwfLibraryError – An error occurred while executing the operation.

limitationGet(channel_index: int)→ float
Get the AnalogOut channel limitation value, in Volts or Amps.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The currently configured limitation value, in Volts or Amps.

Return type
float

Raises
DwfLibraryError – An error occurred while executing the operation.

customAMFMEnableSet(channel_index: int, enable: bool)→ None
Set the AnalogOut channel custom AM/FM enable status.

Todo: Understand and document what this setting does.

Note: This setting is only applicable to Electronics Explorer devices, as stated in a message on the
Digilent forum.

Parameters

• channel_index (int) – The AnalogOut channel.

• enable (bool) – The custom AM/FM enable setting.

Raises
DwfLibraryError – An error occurred while executing the operation.

4.3. Analog output instrument 73

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://digilent.com/reference/test-and-measurement/electronics-explorer/start
https://forum.digilentinc.com/topic/22281-installation-of-waveforms-on-linux-amd64-runs-into-dependency-problem/#comment-64663
https://forum.digilentinc.com/topic/22281-installation-of-waveforms-on-linux-amd64-runs-into-dependency-problem/#comment-64663
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

pydwf, Release 1.1.19

customAMFMEnableGet(channel_index: int)→ bool
Get the AnalogOut channel custom AM/FM enable status.

Todo: Understand and document what this setting does.

Note: This setting is only applicable to Electronics Explorer devices, as stated in a message on the
Digilent forum.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The custom AM/FM enable state.

Return type
bool

Raises
DwfLibraryError – An error occurred while executing the operation.

nodeInfo(channel_index: int)→ List[DwfAnalogOutNode]
Get a list of valid AnalogOut channel nodes.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The valid nodes for this channel.

Return type
List[DwfAnalogOutNode]

Raises
DwfLibraryError – An error occurred while executing the operation.

nodeEnableSet(channel_index: int, node: DwfAnalogOutNode, mode: int)→ None
Enabled or disable an AnalogOut channel node.

The carrier node enables or disables the channel or selects the modulation. With channel_index -1,
each analog-out channel enable mode will be configured to the same, new option.

Parameters

• channel_index (int) – The AnalogOut channel. Specify -1 to configure all Analo-
gOut channels.

• node (DwfAnalogOutNode) – The channel node.

• mode (int) – The enable mode.

Note: The precise meaning of the mode parameter is not clear from the documentation.

Raises
DwfLibraryError – An error occurred while executing the operation.

nodeEnableGet(channel_index: int, node: DwfAnalogOutNode)→ int
Get the enabled state of an AnalogOut channel node.

Parameters

74 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://digilent.com/reference/test-and-measurement/electronics-explorer/start
https://forum.digilentinc.com/topic/22281-installation-of-waveforms-on-linux-amd64-runs-into-dependency-problem/#comment-64663
https://forum.digilentinc.com/topic/22281-installation-of-waveforms-on-linux-amd64-runs-into-dependency-problem/#comment-64663
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

• channel_index (int) – The AnalogOut channel.

• node (DwfAnalogOutNode) – The channel node.

Returns
The currently configured enable mode setting.

Return type
int

Note: The precise meaning of the mode parameter is not clear from the documentation.

Raises
DwfLibraryError – An error occurred while executing the operation.

nodeFunctionInfo(channel_index: int, node: DwfAnalogOutNode)→ List[DwfAnalogOutFunction]
Get the valid waveform shape function options of an AnalogOut channel node.

Parameters

• channel_index (int) – The AnalogOut channel.

• node (DwfAnalogOutNode) – The channel node.

Returns
The available node waveform shape functions.

Return type
List[DwfAnalogOutFunction]

Raises
DwfLibraryError – An error occurred while executing the operation.

nodeFunctionSet(channel_index: int, node: DwfAnalogOutNode, func: DwfAnalogOutFunction)→
None

Set the waveform shape function for an AnalogOut channel node.

Parameters

• channel_index (int) – The AnalogOut channel.

• node (DwfAnalogOutNode) – The channel node.

• func (DwfAnalogOutFunction) – The waveform shape function to be configured.

Raises
DwfLibraryError – An error occurred while executing the operation.

nodeFunctionGet(channel_index: int, node: DwfAnalogOutNode)→ DwfAnalogOutFunction
Get the waveform shape function for an AnalogOut channel node.

Parameters

• channel_index (int) – The AnalogOut channel.

• node (DwfAnalogOutNode) – The channel node.

Returns
The currently configured waveform shape function.

Return type
DwfAnalogOutNode

Raises
DwfLibraryError – An error occurred while executing the operation.

4.3. Analog output instrument 75

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

nodeFrequencyInfo(channel_index: int, node: DwfAnalogOutNode)→ Tuple[float, float]
Get the channel node valid frequency range for an AnalogOut channel node, in Hz.

Parameters

• channel_index (int) – The AnalogOut channel.

• node (DwfAnalogOutNode) – The channel node.

Returns
The range of valid frequencies, in Hz.

Return type
Tuple[float, float]

Raises
DwfLibraryError – An error occurred while executing the operation.

nodeFrequencySet(channel_index: int, node: DwfAnalogOutNode, frequency: float)→ None
Set the channel node frequency for an AnalogOut channel node, in Hz.

Parameters

• channel_index (int) – The AnalogOut channel.

• node (DwfAnalogOutNode) – The channel node.

• frequency (float) – The frequency, in Hz.

Raises
DwfLibraryError – An error occurred while executing the operation.

nodeFrequencyGet(channel_index: int, node: DwfAnalogOutNode)→ float
Get the frequency for an AnalogOut channel node, in Hz.

Parameters

• channel_index (int) – The AnalogOut channel.

• node (DwfAnalogOutNode) – The channel node.

Returns
The currently configured frequency, in Hz.

Return type
float

Raises
DwfLibraryError – An error occurred while executing the operation.

nodeAmplitudeInfo(channel_index: int, node: DwfAnalogOutNode)→ Tuple[float, float]
Get the amplitude range for an AnalogOut channel node, in Volts.

Parameters

• channel_index (int) – The AnalogOut channel.

• node (DwfAnalogOutNode) – The channel node.

Returns
The range of allowed amplitude values, in Volts.

Return type
tuple[float, float]

Raises
DwfLibraryError – An error occurred while executing the operation.

76 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

nodeAmplitudeSet(channel_index: int, node: DwfAnalogOutNode, amplitude: float)→ None
Set the amplitude for an AnalogOut channel node, in Volts.

Parameters

• channel_index (int) – The AnalogOut channel.

• node (DwfAnalogOutNode) – The channel node.

• amplitude (float) – The amplitude to be configured, in Volts.

Raises
DwfLibraryError – An error occurred while executing the operation.

nodeAmplitudeGet(channel_index: int, node: DwfAnalogOutNode)→ float
Get the amplitude for an AnalogOut channel node, in Volts.

Parameters

• channel_index (int) – The AnalogOut channel.

• node (DwfAnalogOutNode) – The channel node.

Returns
The currently configured amplitude, in Volts.

Return type
float

Raises
DwfLibraryError – An error occurred while executing the operation.

nodeOffsetInfo(channel_index: int, node: DwfAnalogOutNode)→ Tuple[float, float]
Get the valid offset range for an AnalogOut channel node, in Volts.

Parameters

• channel_index (int) – The AnalogOut channel.

• node (DwfAnalogOutNode) – The channel node.

Returns
The range of valid node offsets, in Volts.

Return type
Tuple[float, float]

Raises
DwfLibraryError – An error occurred while executing the operation.

nodeOffsetSet(channel_index: int, node: DwfAnalogOutNode, offset: float)→ None
Set the offset for an AnalogOut channel node, in Volts.

Note: Configuring the offset of the Carrier node takes a noticeable amount of time (100s of millisec-
onds).

Parameters

• channel_index (int) – The AnalogOut channel.

• node (DwfAnalogOutNode) – The channel node.

• offset (float) – The channel offset to be configured, in Volts.

Raises
DwfLibraryError – An error occurred while executing the operation.

4.3. Analog output instrument 77

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

nodeOffsetGet(channel_index: int, node: DwfAnalogOutNode)→ float
Get the offset for an AnalogOut channel node, in Volts.

Parameters

• channel_index (int) – The AnalogOut channel.

• node (DwfAnalogOutNode) – The channel node.

Returns
The currently configured node offset.

Return type
float

Raises
DwfLibraryError – An error occurred while executing the operation.

nodeSymmetryInfo(channel_index: int, node: DwfAnalogOutNode)→ Tuple[float, float]
Get the symmetry range for an AnalogOut channel node.

The symmetry value alters the waveform shape function of the node.

The symmetry value ranges from 0 to 100 for most waveform shape functions, except for the SinePower
waveform shape function, where it ranges from -100 to +100.

Parameters

• channel_index (int) – The AnalogOut channel.

• node (DwfAnalogOutNode) – The channel node.

Returns
The range of valid symmetry settings.

Return type
Tuple[float, float]

Raises
DwfLibraryError – An error occurred while executing the operation.

nodeSymmetrySet(channel_index: int, node: DwfAnalogOutNode, symmetry: float)→ None
Set the symmetry value for an AnalogOut channel node.

The symmetry value alters the waveform shape function of the node.

Parameters

• channel_index (int) – The AnalogOut channel.

• node (DwfAnalogOutNode) – The channel node.

• symmetry (float) – The symmetry setting.

Raises
DwfLibraryError – An error occurred while executing the operation.

nodeSymmetryGet(channel_index: int, node: DwfAnalogOutNode)→ float
Get the symmetry value for an AnalogOut channel node.

The symmetry value alters the waveform shape function of the node.

Parameters

• channel_index (int) – The AnalogOut channel.

• node (DwfAnalogOutNode) – The channel node.

Returns
The currently configured channel node symmetry value.

78 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Return type
float

Raises
DwfLibraryError – An error occurred while executing the operation.

nodePhaseInfo(channel_index: int, node: DwfAnalogOutNode)→ Tuple[float, float]
Get the valid phase range for an AnalogOut channel node, in degrees.

Parameters

• channel_index (int) – The AnalogOut channel.

• node (DwfAnalogOutNode) – The channel node.

Returns
The range of valid channel node phase values, in degrees.

Return type
Tuple[float, float]

Raises
DwfLibraryError – An error occurred while executing the operation.

nodePhaseSet(channel_index: int, node: DwfAnalogOutNode, phase: float)→ None
Set the phase for an AnalogOut channel node, in degrees.

Parameters

• channel_index (int) – The AnalogOut channel.

• node (DwfAnalogOutNode) – The channel node.

• phase (float) – The phase setting, in degrees.

Raises
DwfLibraryError – An error occurred while executing the operation.

nodePhaseGet(channel_index: int, node: DwfAnalogOutNode)→ float
Get the phase for an AnalogOut channel node, in degrees.

Parameters

• channel_index (int) – The AnalogOut channel.

• node (DwfAnalogOutNode) – The channel node.

Returns
The currently configured node phase value, in degrees.

Return type
float

Raises
DwfLibraryError – An error occurred while executing the operation.

nodeDataInfo(channel_index: int, node: DwfAnalogOutNode)→ Tuple[float, float]
Get data range for an AnalogOut channel node, in samples.

Parameters

• channel_index (int) – The AnalogOut channel.

• node (DwfAnalogOutNode) – The channel node.

Returns
The range of valid values.

Return type
Tuple[float, float]

4.3. Analog output instrument 79

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

Raises
DwfLibraryError – An error occurred while executing the operation.

nodeDataSet(channel_index: int, node: DwfAnalogOutNode, data: ndarray)→ None
Set the data for an AnalogOut channel node.

Parameters

• channel_index (int) – The AnalogOut channel.

• node (DwfAnalogOutNode) – The channel node.

• data (np.ndarray) – The data.

Raises
DwfLibraryError – An error occurred while executing the operation.

nodePlayStatus(channel_index: int, node: DwfAnalogOutNode)→ Tuple[int, int, int]
Get the play status for an AnalogOut channel node.

Parameters

• channel_index (int) – The AnalogOut channel.

• node (DwfAnalogOutNode) – The channel node.

Returns
The free, lost, and corrupted status counts, in samples.

Return type
Tuple[int, int, int]

Raises
DwfLibraryError – An error occurred while executing the operation.

nodePlayData(channel_index: int, node: DwfAnalogOutNode, data: ndarray)→ None
Provide the playback data for an AnalogOut channel node.

Parameters

• channel_index (int) – The AnalogOut channel.

• node (DwfAnalogOutNode) – The channel node.

• data (np.ndarray) – The playback data.

Raises
DwfLibraryError – An error occurred while executing the operation.

enableSet(channel_index: int, enable: bool)→ None
Enable or disable the specified AnalogOut channel.

Warning: This method is obsolete.

Use the nodeEnableSet() method instead.

Parameters

• channel_index (int) – The AnalogOut channel.

• enable (bool) – The enable setting.

Raises
DwfLibraryError – An error occurred while executing the operation.

80 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

pydwf, Release 1.1.19

enableGet(channel_index: int)→ bool
Get the current enable/disable status of the specified AnalogOut channel.

Warning: This method is obsolete.

Use the nodeEnableGet() method instead.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The ‘enable’ state of the channel.

Return type
bool

Raises
DwfLibraryError – An error occurred while executing the operation.

functionInfo(channel_index: int)→ List[DwfAnalogOutFunction]
Get the AnalogOut channel waveform shape function info.

Warning: This method is obsolete.

Use the nodeFunctionInfo() method instead.

Returns
The valid waveform shape functions.

Return type
List[DwfAnalogOutFunction]

Parameters
channel_index (int) – The AnalogOut channel.

Raises
DwfLibraryError – An error occurred while executing the operation.

functionSet(channel_index: int, func: DwfAnalogOutFunction)→ None
Set the AnalogOut channel waveform shape function.

Warning: This method is obsolete.

Use the nodeFunctionSet() method instead.

Parameters

• channel_index (int) – The AnalogOut channel.

• func (DwfAnalogOutFunction) – The waveform shape function to use.

Raises
DwfLibraryError – An error occurred while executing the operation.

functionGet(channel_index: int)→ DwfAnalogOutFunction
Get the AnalogOut channel waveform shape function.

4.3. Analog output instrument 81

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Warning: This method is obsolete.

Use the nodeFunctionGet() method instead.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The currently configured waveform shape function.

Return type
DwfAnalogOutFunction

Raises
DwfLibraryError – An error occurred while executing the operation.

frequencyInfo(channel_index: int)→ Tuple[float, float]
Get the AnalogOut channel valid frequency range, in Hz.

Warning: This method is obsolete.

Use the nodeFrequencyInfo() method instead.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The valid frequency range, in Hz.

Return type
Tuple[float, float]

Raises
DwfLibraryError – An error occurred while executing the operation.

frequencySet(channel_index: int, frequency: float)→ None
Set the AnalogOut channel frequency, in Hz.

Warning: This method is obsolete.

Use the nodeFrequencySet() method instead.

Parameters

• channel_index (int) – The AnalogOut channel.

• frequency (float) – The frequency to use.

Raises
DwfLibraryError – An error occurred while executing the operation.

frequencyGet(channel_index: int)→ float
Get the AnalogOut channel frequency, in Hz.

Warning: This method is obsolete.

Use the nodeFrequencyGet() method instead.

82 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The currently configured frequency, in Hz.

Return type
float

Raises
DwfLibraryError – An error occurred while executing the operation.

amplitudeInfo(channel_index: int)→ Tuple[float, float]
Get the AnalogOut channel amplitude range info.

Warning: This method is obsolete.

Use the nodeAmplitudeInfo() method instead.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The range of valid amplitudes, in Volts.

Return type
Tuple[float, float]

Raises
DwfLibraryError – An error occurred while executing the operation.

amplitudeSet(channel_index: int, amplitude: float)→ None
Set the AnalogOut channel amplitude.

Warning: This method is obsolete.

Use the nodeAmplitudeSet() method instead.

Parameters

• channel_index (int) – The AnalogOut channel.

• amplitude (float) – The amplitude, in Volts.

Raises
DwfLibraryError – An error occurred while executing the operation.

amplitudeGet(channel_index: int)→ float
Get the AnalogOut channel amplitude.

Warning: This method is obsolete.

Use the nodeAmplitudeGet() method instead.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The currently configured amplitude, in Volts.

4.3. Analog output instrument 83

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Return type
float

Raises
DwfLibraryError – An error occurred while executing the operation.

offsetInfo(channel_index: int)→ Tuple[float, float]
Get the AnalogOut channel offset range info, in Volts.

Warning: This method is obsolete.

Use the nodeOffsetInfo() method instead.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The valid range of offset values, in Volts.

Return type
Tuple[float, float]

Raises
DwfLibraryError – An error occurred while executing the operation.

offsetSet(channel_index: int, offset: float)→ None
Set the AnalogOut channel offset, in Volts.

Warning: This method is obsolete.

Use the nodeOffsetSet() method instead.

Parameters

• channel_index (int) – The AnalogOut channel.

• offset (float) – The channel offset, in Volts.

Raises
DwfLibraryError – An error occurred while executing the operation.

offsetGet(channel_index: int)→ float
Get the AnalogOut channel offset, in Volts.

Warning: This method is obsolete.

Use the nodeOffsetGet() method instead.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The valid offset value, in Volts.

Return type
float

Raises
DwfLibraryError – An error occurred while executing the operation.

84 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

symmetryInfo(channel_index: int)→ Tuple[float, float]
Get the AnalogOut channel symmetry setting range.

Warning: This method is obsolete.

Use the nodeSymmetryInfo() method instead.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The range of valid symmetry settings.

Return type
Tuple[float, float]

Raises
DwfLibraryError – An error occurred while executing the operation.

symmetrySet(channel_index: int, symmetry: float)→ None
Set the AnalogOut channel symmetry setting.

Warning: This method is obsolete.

Use the nodeSymmetrySet() method instead.

Parameters

• channel_index (int) – The AnalogOut channel.

• symmetry (float) – The channel symmetry setting.

Raises
DwfLibraryError – An error occurred while executing the operation.

symmetryGet(channel_index: int)→ float
Get the AnalogOut channel symmetry setting.

Warning: This method is obsolete.

Use the nodeSymmetryGet() method instead.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The currently configured symmetry setting.

Return type
float

Raises
DwfLibraryError – An error occurred while executing the operation.

phaseInfo(channel_index: int)→ Tuple[float, float]
Get the AnalogOut channel phase range, in degrees.

4.3. Analog output instrument 85

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

Warning: This method is obsolete.

Use the nodePhaseInfo() method instead.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The range of valid phase values, in degrees.

Return type
Tuple[float, float]

Raises
DwfLibraryError – An error occurred while executing the operation.

phaseSet(channel_index: int, phase: float)→ None
Set the AnalogOut channel phase, in degrees.

Warning: This method is obsolete.

Use the nodePhaseSet() method instead.

Parameters

• channel_index (int) – The AnalogOut channel.

• phase (float) – The phase setting, in degrees.

Raises
DwfLibraryError – An error occurred while executing the operation.

phaseGet(channel_index: int)→ float
Get the AnalogOut channel phase, in degrees.

Warning: This method is obsolete.

Use the nodePhaseGet() method instead.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The currently configured phase, in degrees.

Return type
float

Raises
DwfLibraryError – An error occurred while executing the operation.

dataInfo(channel_index: int)→ Tuple[int, int]
Get the AnalogOut channel data buffer range.

Warning: This method is obsolete.

Use the nodeDataInfo() method instead.

86 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The data range.

Return type
Tuple[int, int]

Raises
DwfLibraryError – An error occurred while executing the operation.

dataSet(channel_index: int, data: ndarray)→ None
Set the AnalogOut channel data.

Warning: This method is obsolete.

Use the nodeDataSet() method instead.

Parameters

• channel_index (int) – The AnalogOut channel.

• data (np.ndarray) – The data.

Raises
DwfLibraryError – An error occurred while executing the operation.

playStatus(channel_index: int)→ Tuple[int, int, int]
Get the AnalogOut channel playback status, in samples.

Warning: This method is obsolete.

Use the nodePlayStatus() method instead.

Parameters
channel_index (int) – The AnalogOut channel.

Returns
The playback status.

Return type
Tuple[int, int, int]

Raises
DwfLibraryError – An error occurred while executing the operation.

playData(channel_index: int, data: ndarray)→ None
Provide the AnalogOut channel playback data.

Warning: This method is obsolete.

Use the nodePlayData() method instead.

Parameters

• channel_index (int) – The AnalogOut channel.

• data (np.ndarray) – The playback data.

4.3. Analog output instrument 87

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Raises
DwfLibraryError – An error occurred while executing the operation.

property device

Return the DwfDevice instance of which we are an attribute.

This is useful if we have a variable that contains a reference to a DwfDevice attribute, but we need the
DwfDevice itself.

Returns
The DwfDevice instance that this attribute belongs to.

Return type
DwfDevice

4.4 Analog I/O

The AnalogIO API provides two types of analog functionality:

• Monitoring of on-board sensors, e.g. for voltages, currents, and temperatures;

• Control of voltage (power) supplies, on Digilent Waveforms devices that support it.

The AnalogIO functionality, despite its name, does not overlap with the functionality of the AnalogIn and Analo-
gOut instruments. It cannot be used to control the analog signal outputs or to monitor the analog signal inputs.

An exception is that the AnalogOut instrument on an Analog Discovery 2 device (and perhaps some others) can be
made to control the voltage sources of the device as if they were regular, low bandwidth analog output channels,
by selecting an appropriate device configuration when opening the device. This feature can be useful in rare cases
when a non-constant supply voltage is needed for testing. However, in most cases by far, only a static (constant)
voltage is needed, and the easiest way to accomplish that is via the AnalogIO API.

4.4.1 Using the Analog I/O functionality

To use the AnalogIO functionality you first need to initialize a DwfLibrary instance. Next, you open a specific
device. The device’s AnalogIO API can now be accessed via its analogIO attribute, which is an instance of the
AnalogIO class:

from pydwf import DwfLibrary
from pydwf.utilities import openDwfDevice

dwf = DwfLibrary()

with openDwfDevice(dwf) as device:

Get a reference to the device's AnalogIO functionality.
analogIO = device.analogIO

Use the AnalogIO functionality.
analogIO.reset()

88 Chapter 4. The DwfDevice class and its attributes

pydwf, Release 1.1.19

4.4.2 AnalogIO channels and nodes

The quantities that can be monitored and controlled by the AnalogIO functionality are organized in channels. Each
channel can have one or more nodes.

A typical example is the USB Monitor channel of the Analog Discovery 2 device. It has 3 nodes: Voltage, Current,
and Temperature, that can be used to report on these three quantities.

The USB Monitor channel is fully passive; its nodes can only be monitored. Other channels have nodes that
can also be controlled, for example the Positive Supply and Negative Supply channels of the Analog Discovery 2.
Those channels have two nodes each that can be controlled (Enabled and Voltage), and one node that can only be
monitored (Current).

The AnalogIO.py example program enumerates the AnalogIO channels and nodes of any Digilent Waveforms
device; it is recommended to study that program to understand how to use the AnalogIO functionality.

Below, by way of example, we show the channels and nodes of three Digilent Waveforms devices: the Analog
Discovery 2, the Digital Discovery, and the Analog Discovery Pro.

Table 23: AnalogIO channels and nodes of the Analog Discovery 2 device

channel channel name ch. label node node name unit node type
0 Positive Supply V+ 0 Enable n/a Enable

1 Voltage V Voltage
2 Current A Current

1 Negative Supply V- 0 Enable n/a Enable
1 Voltage V Voltage
2 Current A Current

2 USB Monitor USB 0 Voltage V Voltage
1 Current A Current
2 Temperature C Temperature

3 Auxiliary Monitor Aux 0 Voltage V Voltage
1 Current A Current

4 Power Supply V+- 0 Limit n/a Enable

Table 24: AnalogIO channels and nodes of the Digital Discovery device

channel channel name ch. label node node name unit node type
0 Digital Voltage VDD 0 Voltage V Voltage

1 DINPP n/a Enable
2 DIOPE n/a Enable
3 DIOPP n/a Enable
4 Drive n/a Current
5 Slew n/a Enable
6 Clock Hz Frequency

1 Voltage Output VIO 0 Voltage V Voltage
1 Current A Current

2 USB Monitor USB 0 Voltage V Voltage
1 Current A Current

4.4. Analog I/O 89

https://github.com/sidneycadot/pydwf/blob/master/source/pydwf-examples/AnalogIO.py

pydwf, Release 1.1.19

Table 25: AnalogIO channels and nodes of the Analog Discovery Pro
(ADP3450) device

channel channel name ch. label node node name unit node type
0 Digital Voltage DVCC 0 Voltage Voltage

1 DIOPE n/a Enable
2 DIOPP n/a Enable

1 Zynq Zynq 0 Temperature C Temperature
1 VccInt V Voltage
2 VccAux V Voltage
3 VccBRam V Voltage
4 VccPInt V Voltage
5 VccPAux V Voltage
6 VccDDR V Voltage

2 ZynqMin ZynqMin 0 Temperature C Temperature
1 VccInt V Voltage
2 VccAux V Voltage
3 VccBRam V Voltage
4 VccPInt V Voltage
5 VccPAux V Voltage
6 VccDDR V Voltage

3 ZynqMax ZynqMax 0 Temperature C Temperature
1 VccInt V Voltage
2 VccAux V Voltage
3 VccBRam V Voltage
4 VccPInt V Voltage
5 VccPAux V Voltage
6 VccDDR V Voltage

Note: Channel 2 (ZynqMin), node 5 of the Analog Discovery Pro device was reported incorrectly in version
3.16.3 of the DWF library. This has been corrected in version 3.17.1.

4.4.3 AnalogIO reference

class AnalogIO

The AnalogIO class provides access to the analog I/O functionality of a DwfDevice.

The AnalogIO methods are used to control the power supplies, reference voltage supplies, voltmeters, am-
meters, thermometers, and any other sensors on the device. These are organized into channels which contain
a number of nodes. For instance, a power supply channel might have three nodes: an ‘enable’ setting, a
voltage level setting/reading, and current limitation setting/reading.

Attention: Users of pydwf should not create instances of this class directly.

It is instantiated during initialization of a DwfDevice and subsequently assigned to its public analogIO
attribute for access by the user.

reset()→ None
Reset and configure all AnalogIO settings to default values.

If autoconfiguration is enabled, the changes take effect immediately.

Raises
DwfLibraryError – An error occurred while executing the reset operation.

90 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/constants.html#None

pydwf, Release 1.1.19

configure()→ None
Configure the AnalogIO functionality.

This method transfers the settings to the Digilent Waveforms device. It is not needed if autoconfigura-
tion is enabled.

Raises
DwfLibraryError – An error occurred while executing the configure operation.

status()→ None
Read the status of the device and stores it internally.

The status inquiry methods that follow will return the information that was read from the device when
this method was last called.

Note that the AnalogIO functionality is not managed by a state machine, so this method does not return
a value.

Raises
DwfLibraryError – An error occurred while executing the status operation.

enableInfo()→ Tuple[bool, bool]
Verify if Master Enable and/or Master Enable Status are supported.

The Master Enable is a software switch that enable the AnalogIO voltage sources.

If supported, the current value of this Master Enable switch (Enabled/Disabled) can be set by the
enableSet() method and queried by the enableGet() method.

The Master Enable Status that can be queried by the enableStatus() method may be different from
the Master Enable value if e.g. an over-current protection circuit has been triggered.

Returns
The tuple elements indicate whether Master Enable Set and Master Enable Status, re-
spectively, are supported by the AnalogIO device.

Return type
Tuple[bool, bool]

Raises
DwfLibraryError – An error occurred while executing the operation.

enableSet(master_enable: bool)→ None
Set value of the Master Enable setting.

Parameters
master_enable (bool) – The new value of the Master Enable setting.

Raises
DwfLibraryError – An error occurred while executing the operation.

enableGet()→ bool
Return the current value of the Master Enable setting.

Returns
The value of the Master Enable setting.

Raises
DwfLibraryError – An error occurred while executing the operation.

enableStatus()→ bool
Return the actual Master Enable Status value (if the device supports it).

The Master Enable Status value may be different from the Master Enable setting if e.g. an over-current
protection circuit has been triggered.

Returns
the current status of the Master Enable circuit.

4.4. Analog I/O 91

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pydwf, Release 1.1.19

Return type
bool

Raises
DwfLibraryError – An error occurred while executing the operation.

channelCount()→ int
Return the number of AnalogIO channels available on the device.

Returns
The number of AnalogIO channels.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

channelName(channel_index: int)→ Tuple[str, str]
Return the name (long text) and label (short text, printed on the device) for the specified AnalogIO
channel.

Parameters
channel_index (int) – The channel for which we want to get the name and label.

Returns
The name and label of the channel.

Return type
Tuple[str, str]

Raises
DwfLibraryError – An error occurred while executing the operation.

channelInfo(channel_index: int)→ int
Return the number of nodes associated with the specified AnalogIO channel.

Parameters
channel_index (int) – The channel for which we want to get the number of associated
nodes.

Returns
The number of nodes associated to the channel.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

channelNodeName(channel_index: int, node_index: int)→ Tuple[str, str]
Return the node name (“Voltage”, “Current”, . . .) and units (“V”, “A”, . . .) for the specified AnalogIO
node.

Parameters

• channel_index (int) – The channel for which we want to get the name and unit.

• node_index (int) – The node for which we want to get the name and unit.

Returns
The name and unit of the quantity associated with the node.

Return type
Tuple[str, str]

Raises
DwfLibraryError – An error occurred while executing the operation.

92 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pydwf, Release 1.1.19

channelNodeInfo(channel_index: int, node_index: int)→ DwfAnalogIO
Return the type of physical quantity (e.g., voltage, current, or temperature) represented by the specified
AnalogIO channel node.

Parameters

• channel_index (int) – The channel for which we want to get the type of physical
quantity.

• node_index (int) – The node for which we want to get the type of physical quantity.

Returns
The type of physical quantity represented by the node.

Return type
DwfAnalogIO

Raises
DwfLibraryError – An error occurred while executing the operation.

channelNodeSetInfo(channel_index: int, node_index: int)→ Tuple[float, float, int]
Return the limits of the value that can be assigned to the specified AnalogIO channel node.

Since a node can represent many things (power supply, temperature sensor, etc.), the minimum, maxi-
mum, and steps parameters also represent different types of values.

The channelNodeInfo() method returns the type of values to expect and the channelNodeName()
method returns the units of these values.

Parameters

• channel_index (int) – The channel for which we want to get the currently configured
value.

• node_index (int) – The node for which we want to get the currently configured value.

Returns
The minimum and maximum values for the specified node’s value, and the number of
resolution steps.

Return type
Tuple[float, float, int]

Raises
DwfLibraryError – An error occurred while executing the operation.

channelNodeSet(channel_index: int, node_index: int, node_value: float)→ None
Set the node value for the specified AnalogIO channel node.

Parameters

• channel_index (int) – The channel for which we want to set the value.

• node_index (int) – The node for which we want to set the value.

• node_value (float) – The value we want to set the node to.

Raises
DwfLibraryError – An error occurred while executing the operation.

channelNodeGet(channel_index: int, node_index: int)→ float
Return the current value of the specified AnalogIO channel node.

Parameters

• channel_index (int) – The channel for which we want to get the current value.

• node_index (int) – The node for which we want to get the current value.

4.4. Analog I/O 93

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Raises
DwfLibraryError – An error occurred while executing the operation.

channelNodeStatusInfo(channel_index: int, node_index: int)→ Tuple[float, float, int]
Return the range of status values for the specified AnalogIO channel node.

Parameters

• channel_index (int) – The channel for which we want to get status information.

• node_index (int) – The node for which we want to get status information.

Returns
The minimum and maximum status values for the specified node, and the number of
resolution steps.

Return type
Tuple[float, float, int]

Raises
DwfLibraryError – An error occurred while executing the operation.

channelNodeStatus(channel_index: int, node_index: int)→ float
Return the most recent status value reading of the specified AnalogIO channel node.

To fetch updated values for all AnalogIO nodes, use the status() method.

Returns
The most recent value read for this channel node.

Return type
float

Raises
DwfLibraryError – An error occurred while executing the operation.

property device

Return the DwfDevice instance of which we are an attribute.

This is useful if we have a variable that contains a reference to a DwfDevice attribute, but we need the
DwfDevice itself.

Returns
The DwfDevice instance that this attribute belongs to.

Return type
DwfDevice

4.5 Analog impedance measurements

The AnalogImpedance functionality supports analog measurements of signal propagation properties on devices
that support it, such as the Analog Discovery and the Analog Discovery 2.

Todo: This section is currently incomplete.

It lacks information on the state machine used in the AnalogImpedance API, what the different settings mean, what
the different methods actually do, and how they can be used to perform measurements.

There are also no AnalogImpedance examples yet.

94 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

4.5.1 Using the analog impedance measurements

To use the AnalogImpedance functionality you first need to initialize a DwfLibrary instance. Next, you open a
specific device. The device’s AnalogImpedance functionality can now be accessed via its analogImpedance
attribute, which is an instance of the AnalogImpedance class.

For example:

from pydwf import DwfLibrary
from pydwf.utilities import openDwfDevice

dwf = DwfLibrary()

with openDwfDevice(dwf) as device:

Get a reference to the device's AnalogImpedance functionality.
analogImpedance = device.analogImpedance

Use the AnalogImpedance functionality.
analogImpedance.reset()

4.5.2 AnalogImpedance reference

class AnalogImpedance

The AnalogImpedance class provides access to the analog impedance measurement functionality of a
DwfDevice.

Attention: Users of pydwf should not create instances of this class directly.

It is instantiated during initialization of a DwfDevice and subsequently assigned to its public
analogImpedance attribute for access by the user.

reset()→ None
Reset the AnalogImpedance functionality.

Raises
DwfLibraryError – An error occurred while executing the reset operation.

configure(start: bool)→ None
Configure the AnalogImpedance functionality, and optionally start a measurement.

Parameters
start (bool) – Whether to start the measurement.

Raises
DwfLibraryError – An error occurred while executing the configure operation.

status()→ DwfState
Return the status of the AnalogImpedance functionality.

Returns
The status of the measurement.

Return type
DwfState

Raises
DwfLibraryError – An error occurred while executing the status operation.

4.5. Analog impedance measurements 95

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

pydwf, Release 1.1.19

modeSet(mode: int)→ None
Set AnalogImpedance measurement mode.

Parameters
mode (int) – The measurement mode.

The following modes are defined:

• 0 — W1-C1-DUT-C2-R-GND

• 1 — W1-C1-R-C2-DUT-GND

• 8 — Impedance analyzer for the Analog Discovery

Raises
DwfLibraryError – An error occurred while executing the operation.

modeGet()→ int
Get AnalogImpedance measurement mode.

Returns

The measurement mode.

The following modes are defined:

• 0 — W1-C1-DUT-C2-R-GND

• 1 — W1-C1-R-C2-DUT-GND

• 8 — Impedance analyzer for the Analog Discovery

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

referenceSet(reference: float)→ None
Set AnalogImpedance reference load value, in Ohms.

Parameters
reference (float) – The reference load, in Ohms.

Raises
DwfLibraryError – An error occurred while executing the operation.

referenceGet()→ float
Get AnalogImpedance reference load value, in Ohms.

Returns
The reference load, in Ohms.

Return type
float

Raises
DwfLibraryError – An error occurred while executing the operation.

frequencySet(frequency: float)→ None
Set AnalogImpedance source frequency, in Hz.

Parameters
frequency (float) – The source frequency, in Hz.

Raises
DwfLibraryError – An error occurred while executing the operation.

96 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://digilent.com/reference/add-ons/impedance-analyzer/start
https://docs.python.org/3/library/functions.html#int
https://digilent.com/reference/add-ons/impedance-analyzer/start
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

frequencyGet()→ float
Get AnalogImpedance source frequency, in Hz.

Returns
The source frequency, in Hz.

Return type
float

Raises
DwfLibraryError – An error occurred while executing the operation.

amplitudeSet(amplitude: float)→ None
Set AnalogImpedance source amplitude value, in Volts.

Parameters
amplitude (float) – The source amplitude, in Volts.

Raises
DwfLibraryError – An error occurred while executing the operation.

amplitudeGet()→ float
Get AnalogImpedance source amplitude, in Volts.

Returns
The source amplitude, in Volts.

Return type
float

Raises
DwfLibraryError – An error occurred while executing the operation.

offsetSet(offset: float)→ None
Set AnalogImpedance source offset, in Volts.

Parameters
offset (float) – The source offset, in Volts.

Raises
DwfLibraryError – An error occurred while executing the operation.

offsetGet()→ float
Get AnalogImpedance source offset, in Volts.

Returns
The source offset, in Volts.

Return type
float

Raises
DwfLibraryError – An error occurred while executing the operation.

probeSet(resistance: float, capacitance: float)→ None
Set AnalogImpedance probe parameters.

Parameters

• resistance (float) – The probe resistance, in Ohms.

• capacitance (float) – The probe capacitance, in Farads.

Raises
DwfLibraryError – An error occurred while executing the operation.

4.5. Analog impedance measurements 97

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

probeGet()→ Tuple[float, float]
Get AnalogImpedance probe parameters.

Returns
A two-element tuple: the probe resistance, in Ohms, and the probe capacity, in Farads.

Return type
Tuple[float, float]

Raises
DwfLibraryError – An error occurred while executing the operation.

periodSet(period: int)→ None
Set the AnalogImpedance measurement period.

Todo: Figure out what this setting is for, why it’s an int, and what its physical unit is.

Parameters
period (int) – The measurement period.

Raises
DwfLibraryError – An error occurred while executing the operation.

periodGet()→ int
Get the AnalogImpedance measurement period.

Todo: Figure out what this setting is for, why it’s an int, and what its physical unit is.

Returns
The measurement period.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

compReset()→ None
Reset the AnalogImpedance measurement computation.

Raises
DwfLibraryError – An error occurred while executing the operation.

compSet(open_resistance: float, open_reactance: float, short_resistance: float, short_reactance: float)
→ None

Set the AnalogImpedance measurement computation parameters.

Parameters

• open_resistance (float) – The open-circuit resistance, in Ohms.

• open_reactance (float) – The open-circuit reactance, in Ohms.

• short_resistance (float) – The short-circuit resistance, in Ohms.

• short_reactance (float) – The short-circuit reactance, in Ohms.

Raises
DwfLibraryError – An error occurred while executing the operation.

98 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

compGet()→ Tuple[float, float, float, float]
Get the AnalogImpedance measurement computation parameters.

Returns
The open-circuit resistance, open-circuit reactance, short-circuit resistance, and short-
circuit reactance (all in Ohms).

Return type
Tuple[float, float, float, float]

Raises
DwfLibraryError – An error occurred while executing the operation.

statusInput(channel_index: int)→ Tuple[float, float]
Get the AnalogImpedance input measurement status.

Parameters
channel_index (int) – The channel for which to get gain and phase information.

Returns
The gain and phase (in radians) of the current measurement.

Return type
Tuple[float, float]

Raises
DwfLibraryError – An error occurred while executing the operation.

statusWarning(channel_index: int)→ int
Get warning for scope input range exceeded.

Parameters
channel_index (int) – The channel for which to get scope input range warning infor-
mation.

Returns
The warning, if any. 1 means low, 2 means high, 3 means both.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

statusMeasure(measure: DwfAnalogImpedance)→ float
Retrieve the AnalogImpedance measurement status value.

Parameters
measure (DwfAnalogImpedance) – The quantity to measure.

Returns
The value measured for the requested quantity.

Return type
float

Raises
DwfLibraryError – An error occurred while executing the operation.

property device

Return the DwfDevice instance of which we are an attribute.

This is useful if we have a variable that contains a reference to a DwfDevice attribute, but we need the
DwfDevice itself.

Returns
The DwfDevice instance that this attribute belongs to.

4.5. Analog impedance measurements 99

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

Return type
DwfDevice

4.6 Digital input instrument

The DigitalIn instrument provides multiple channels of digital input on devices that support it, such as the Analog
Discovery, Analog Discovery 2, and Digital Discovery. It provides the functionality normally associated with a
stand-alone logic analyzer.

Todo: This section is missing some important information:

• A discussion about the different acquisition modes;

• A description of how the status variables behave in the different acquisition modes;

• A discussion of the precise meaning of all settings.

4.6.1 Using the digital input instrument

To use the DigitalIn instrument you first need to initialize a DwfLibrary instance. Next, you open a specific device.
The device’s DigitalIn instrument can now be accessed via its digitalIn attribute, which is an instance of the
DigitalIn class.

For example:

from pydwf import DwfLibrary
from pydwf.utilities import openDwfDevice

dwf = DwfLibrary()

with openDwfDevice(dwf) as device:

Get a reference to the device's DigitalIn instrument.
digitalIn = device.digitalIn

Use the DigitalOut instrument.
digitalIn.reset()

4.6.2 The DigitalIn instrument state machine

The DigitalIn instrument is controlled by a state machine. As a measurement is prepared and executed, the instru-
ment goes through its various states.

The current state of the instrument is returned by the digitalIn.status() method, and is of type DwfState.

The figure below shows the states used by the DigitalIn instrument and the transitions between them:

Fig. 3: States of the DigitalIn instrument

The DigitalIn states are used as follows:

1. Ready

In this preparatory state, instrument settings can be changed that specify the behavior of the instrument in the
coming measurement. If the auto-configure setting of the device is enabled (the default), setting changes will

100 Chapter 4. The DwfDevice class and its attributes

pydwf, Release 1.1.19

automatically be transferred to the device. If not, an explicit call to the digitalIn.configure() method
with the reconfigure parameter set to True is needed to transfer updated settings to the device.

Once the instrument is properly configured, an acquisition can be started by calling the digitalIn.
configure()with the start parameter set to True. This will start the first stage of the acquisition by entering
the Prefill state.

2. Configure

This state is entered momentarily when a setting is being pushed to the device, either by changing the setting
while auto-configure is enabled, or by an explicit call to digitalIn.configure() with the reconfigure
parameter set to True. The settings inside the device will be updated, and the device will immediately
thereafter go back to the Ready state, unless the start parameter to digitalIn.configure() was set to
True.

3. Prefill

This state marks the beginning of an acquisition sequence. During the Prefill state, input samples will be
acquired until enough samples are buffered for the instrument to be ready to react to a trigger.

This state is only relevant if the trigger position has been configured in such a way that the measurement
must also yield sample values prior to the moment of triggering.

Once enough samples are received for the instrument to be able to react to a trigger, it proceeds to the Armed
state.

4. Armed

In this state the instrument continuously captures samples and monitors the configured trigger input. As soon
as a trigger event is detected, the instrument proceeds to the Running state.

5. Running

In this state the instrument continues capturing samples until the acquisition is complete. Completion is
reached when the acquisition buffer has filled up in Single mode, or when the recording length has been
reached in Record mode. When completion is reached, the instrument proceeds to the Done state.

6. Done

This state indicates that a measurement has finished.

From this state, it is possible to go back to the Ready state by performing any kind of configuration, or to
start a new acquisition with the same settings..

4.6.3 DigitalIn instrument API overview

The DigitalIn instrument is quite complicated; 62 methods are provided to control its behavior. Below, we catego-
rize all methods and shortly introduce them. Detailed information on all methods can be found in the DigitalIn
class reference that follows.

Instrument control

Like all instruments supported by the Digilent Waveforms library, the DigitalIn instrument provides reset(),
configure(), and status() methods.

The reset() method resets the instrument.

The configure() method is used to explicitly transfer settings to the instrument, and/or to start a configured
operation.

The status() method retrieves status information from the instrument. Optionally, it can also retrieve bulk data,
i.e. digital input samples. The method returns the current DwfState of the DigitalIn instrument; to obtain more
elaborate status information, one of the methods in the next two sections must be used.

4.6. Digital input instrument 101

pydwf, Release 1.1.19

Table 26: Instrument control (3 methods)

control operation type/unit methods
reset instrument n/a reset()
configure instrument n/a configure()
request instrument status DwfState status()

Status variables

When executing the status() method, status information is transferred from the DigitalIn instrument to the PC.
Several status variables can then be retrieved by using the methods listed below.

Table 27: Status variables (7 methods)

status value type/unit method
timestamp tuple [s] statusTime()
auto-triggered flag bool statusAutoTriggered()
samples left in acquisition int [samples] statusSamplesLeft()
samples valid count int [samples] statusSamplesValid()
buffer write index int [samples] statusIndexWrite()
recording status tuple [samples] statusRecord()
compressed status tuple [samples] statusCompress()

Status data retrieval

Executing the status() method with the read_data parameter set to True transfers captured samples from the
instrument to the PC. The samples can then be retrieved using the methods listed here.

Table 28: Bulk status data retrieval (5 methods)

status data type/unit methods
get sample data (without buffer offset) [bytes] statusData()
get sample data (with buffer offset) [bytes] statusData2()
get compressed sample data (without buffer offset) [bytes] statusCompressed()
get compressed sample data (with buffer offset) [bytes] statusCompressed2()
get sample noise (with offset) [bytes] statusNoise2()

Acquisition timing settings

The acquisition settings control the timing of the digital data acquisition process.

Table 29: Acquisition timing settings (7 methods)

setting type/unit methods
internal clock float [Hz] internalClockInfo()
clock source DwfDigitalInClockSource clockSourceInfo() , –Set() , –Get()
divider int [-] dividerInfo() , –Set() , –Get()

102 Chapter 4. The DwfDevice class and its attributes

pydwf, Release 1.1.19

Acquisition settings

The acquisition settings control various aspects of the digital data acquisition process.

Table 30: Acquisition settings (17 methods)

setting type/unit methods
acquisition mode DwfAcquisitionMode acquisitionModeInfo() , –Set() , –Get()
bits int [-] bitsInfo()
sample format int [bits] sampleFormatSet() , –Get()
input order bool inputOrderSet()
buffer size int [samples] bufferSizeInfo() , –Set() , –Get()
sample mode DwfDigitalInSampleMode sampleModeInfo() , –Set() , –Get()
sample sensible int sampleSensibleSet() , –Get()
trigger prefill int [samples] triggerPrefillSet() , –Get()

Instrument trigger configuration

The following methods are used to configure the trigger of the DigitalIn instrument. The trigger source is fully
configurable; the DigitalIn instrument can use its own trigger detector for triggering, but it is also possible to use a
different trigger source. For that reason, we distinguish between the methods that configure the instrument trigger
in this section, and the methods that configure the DigitalIn trigger detector that are discussed below.

Table 31: Instrument trigger configuration (11 methods)

setting type/unit methods
trigger source DwfTriggerSource triggerSourceInfo() , –Set() , –Get()
trigger slope DwfTriggerSlope triggerSlopeSet() , –Get()
trigger position float [s] triggerPositionInfo() , –Set() , –Get()
trigger auto-timeout float [s] triggerAutoTimeoutInfo() , –Set() , –Get()

Note: The triggerSourceInfo() method is obsolete. Use the generic DwfDevice.triggerInfo() method
instead.

Trigger detector configuration

The DigitalIn trigger detector is highly configurable. Unfortunately, its documentation is sparse, so some experi-
mentation is needed to figure out how it works.

Todo: Figure out and explain how the DigitalIn trigger detector works.

Table 32: Trigger detector configuration (7 methods)

setting type/unit methods
trigger bit masks triggerInfo() , –Set() , –Get()
trigger reset to be documented triggerResetSet()
trigger count to be documented triggerCountSet()
trigger length to be documented triggerLengthSet()
trigger match to be documented triggerMatchSet()

4.6. Digital input instrument 103

pydwf, Release 1.1.19

Counter functionality

Table 33: Counter configuration (4 methods)

setting type/unit methods
counter configuration
counter status

float [s], int [-] float [s], float
[Hz], int [-]

counterInfo() , –Set() , –Get()
counterStatus()

Miscellaneous settings

The mixed setting is obsolete, undocumented, and not understood.

Todo: Figure out what the mixed setting does.

Table 34: Miscellaneous settings (1 method)

operation type/unit method
mixed bool mixedSet()

4.6.4 DigitalIn reference

class DigitalIn

The DigitalIn class provides access to the digital input (logic analyzer) instrument of a DwfDevice.

Attention: Users of pydwf should not create instances of this class directly.

It is instantiated during initialization of a DwfDevice and subsequently assigned to its public digitalIn
attribute for access by the user.

reset()→ None
Reset the DigitalIn instrument parameters to default values.

If autoconfiguration is enabled, the reset values will be used immediately.

Raises
DwfLibraryError – An error occurred while executing the reset operation.

configure(reconfigure: bool, start: bool)→ None
Configure the instrument and start or stop the acquisition operation.

Parameters

• reconfigure (bool) – If True, the instrument settings are sent to the instrument.

• start (bool) – If True, an acquisition is started. If False, an ongoing acquisition is
stopped.

Raises
DwfLibraryError – An error occurred while executing the configure operation.

status(read_data_flag: bool)→ DwfState
Get the DigitalIn instrument state.

This method performs a status request to the DigitalIn instrument and receives its response.

The following methods can be used to retrieve DigitalIn instrument status information as a result of
this call, regardless of the value of the read_data_flag parameter:

104 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pydwf, Release 1.1.19

• statusTime()

• statusAutoTriggered()

• statusSamplesLeft()

• statusSamplesValid()

• statusIndexWrite()

• statusRecord()

The following methods can be used to retrieve bulk data obtained from the DigitalIn instrument as a
result of this call, but only if the read_data_flag parameter is True:

• statusData()

• statusData2()

• statusNoise2()

Parameters
read_data_flag (bool) – Whether to read data.

Returns
The current state of the instrument.

Return type
DwfState

Raises
DwfLibraryError – An error occurred while executing the status operation.

statusTime()→ Tuple[int, int, int]
Get the timestamp of the current status information.

Returns

A three-element tuple, indicating the POSIX timestamp of the status request. The first
element is the POSIX second, the second and third element are the numerator and de-
nominator, respectively, of the fractional part of the second.

In case status() hasn’t been called yet, this method will return zeroes for all three tuple
elements.

Return type
Tuple[int, int, int]

Raises
DwfLibraryError – An error occurred while executing the operation.

statusAutoTriggered()→ bool
Check if the current acquisition is auto-triggered.

Returns
True if the current acquisition is auto-triggered, False otherwise.

Return type
bool

Raises
DwfLibraryError – An error occurred while retrieving the auto-triggered status.

statusSamplesLeft()→ int
Retrieve the number of samples left in the acquisition, in samples.

Returns
In case a finite-duration acquisition is active, the number of samples remaining to be
acquired in the acquisition.

4.6. Digital input instrument 105

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

statusSamplesValid()→ int
Retrieve the number of valid data samples.

Returns
The number of valid samples in the buffer.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

statusIndexWrite()→ int
Retrieve the buffer write index.

This is needed in ScanScreen acquisition mode to display the scan bar.

Returns
The buffer write index.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

statusRecord()→ Tuple[int, int, int]
Get the recording status.

Returns
A three-element tuple containing the counts for available, lost, and corrupt data samples,
in that order.

Return type
Tuple[int, int, int]

Raises
DwfLibraryError – An error occurred while executing the operation.

statusCompress()→ Tuple[int, int, int]
Get the recording status (compress version).

Returns
A three-element tuple containing the counts for available, lost, and corrupt data samples,
in that order.

Return type
Tuple[int, int, int]

Raises
DwfLibraryError – An error occurred while executing the operation.

statusData(count: int, sample_format: int | None = None)→ ndarray
Retrieve the acquired data samples from the DigitalIn instrument.

Parameters

• count (int) – Sample count.

• sample_format (int) – If not specified, the current value is queried using
sampleFormatGet().

106 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Returns
a 1D numpy array of 8, 16, or 32-bit unsigned words.

Raises
DwfLibraryError – An error occurred while executing the operation.

statusData2(offset: int, count: int, sample_format: int | None = None)→ ndarray
Retrieve the acquired data samples from the DigitalIn instrument.

Parameters

• count (int) – Sample count.

• sample_format (int) – Either 8, 16 or 32 bits per sample. If not specified, the current
value is queried using sampleFormatGet().

Returns
a 1D numpy array of 8, 16, or 32-bit unsigned words.

Raises
DwfLibraryError – An error occurred while executing the operation.

statusCompressed(count_bytes: int)→ ndarray
Retrieve the compressed data samples from the DigitalIn instrument.

Todo: Figure out the data format.

Raises
DwfLibraryError – An error occurred while executing the operation.

statusCompressed2(first_sample: int, count_bytes: int)→ ndarray
Retrieve the acquired data samples from the DigitalIn instrument.

Todo: Figure out the data format.

Raises
DwfLibraryError – An error occurred while executing the operation.

statusNoise2(first_sample: int, count_bytes: int)→ ndarray
Get the noise data from the DigitalIn instrument.

Todo: Figure out the data format.

Raises
DwfLibraryError – An error occurred while executing the operation.

internalClockInfo()→ float
Get the DigitalIn internal clock frequency, in Hz.

Returns
The internal clock frequency, in Hz.

Raises
DwfLibraryError – An error occurred while executing the operation.

4.6. Digital input instrument 107

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

clockSourceInfo()→ List[DwfDigitalInClockSource]
Get a list of valid clock sources for the DigitalIn instrument.

Returns
A list of valid clock sources.

Return type
List[DwfDigitalInClockSource]

Raises
DwfLibraryError – An error occurred while executing the operation.

clockSourceSet(clock_source: DwfDigitalInClockSource)→ None
Set the DigitalIn instrument clock source.

Parameters
clock_source (DwfDigitalInClockSource) – The clock source to be selected.

Raises
DwfLibraryError – An error occurred while executing the operation.

clockSourceGet()→ DwfDigitalInClockSource
Get the DigitalIn instrument clock source.

Returns
The currently configured DigitalIn clock source.

Return type
DwfDigitalInClockSource

Raises
DwfLibraryError – An error occurred while executing the operation.

dividerInfo()→ int
Get the DigitalIn instrument maximum divider value.

Returns
The maximum valid divider value that can be configured.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

dividerSet(divider: int)→ None
Set the DigitalIn instrument divider value.

Parameters
divider – The divider value to be configured.

Raises
DwfLibraryError – An error occurred while executing the operation.

dividerGet()→ int
Get the current DigitalIn instrument divider value.

If the clock source is internal, the DigitalIn sample frequency will be equal to internalClockInfo()
divided by dividerGet().

Returns
The currently configured divider value.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

108 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

acquisitionModeInfo()→ List[DwfAcquisitionMode]
Get a list of valid DigitalIn instrument acquisition modes.

Returns
A list of valid acquisition modes for the DigitalIn instrument.

Return type
List[DwfAcquisitionMode]

Raises
DwfLibraryError – An error occurred while executing the operation.

acquisitionModeSet(acquisition_mode: DwfAcquisitionMode)→ None
Select the DigitalIn acquisition mode.

Parameters
acquisition_mode (DwfAcquisitionMode) – The acquisition mode to be selected.

Raises
DwfLibraryError – An error occurred while executing the operation.

acquisitionModeGet()→ DwfAcquisitionMode
Get the currently selected DigitalIn acquisition mode.

Returns
The currently selected acquisition mode.

Return type
DwfAcquisitionMode

Raises
DwfLibraryError – An error occurred while executing the operation.

bitsInfo()→ int
Get the number of DigitalIn bits.

Returns
The number of digital input bits available.

Raises
DwfLibraryError – An error occurred while executing the operation.

sampleFormatSet(num_bits: int)→ None
Set the DigitalIn sample format (i.e., number of bits).

Parameters
num_bits (int) – The number of bits per sample (8, 16, or 32).

Raises
DwfLibraryError – An error occurred while executing the operation.

sampleFormatGet()→ int
Get the DigitalIn sample format (i.e., number of bits).

Returns
The currently configured number of bits per sample (8, 16, or 32).

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

inputOrderSet(dio_first: bool)→ None
Select the DigitalIn order of values stored in the sampling array.

If dio_first is True, DIO 24. . . 39 are placed at the beginning of the array followed by DIN 0. . . 23.

4.6. Digital input instrument 109

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

pydwf, Release 1.1.19

If dio_first is False, DIN 0. . . 23 are placed at the beginning followed by DIO 24. . . 31.

This method is valid only for the Digital Discovery device.

Parameters
dio_first (bool) – Whether the DIO pins come before the DIN pins.

Raises
DwfLibraryError – An error occurred while executing the operation.

bufferSizeInfo()→ int
Get the DigitalIn instrument maximum buffer size.

Returns
The maximum valid buffer size.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

bufferSizeSet(buffer_size: int)→ None
Set the DigitalIn instrument buffer size.

Parameters
buffer_size (int) – The buffer size to be configured.

Raises
DwfLibraryError – An error occurred while executing the operation.

bufferSizeGet()→ int
Get the currently configured DigitalIn instrument buffer size.

Returns
The currently configured buffer size.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

sampleModeInfo()→ List[DwfDigitalInSampleMode]
Get the valid DigitalIn instrument sample modes.

Returns
A list of valid sample modes.

Return type
List[DwfDigitalInSampleMode]

Raises
DwfLibraryError – An error occurred while executing the operation.

sampleModeSet(sample_mode: DwfDigitalInSampleMode)→ None
Set the DigitalIn instrument sample mode.

Parameters
sample_mode (DwfDigitalInSampleMode) – The sample mode to be configured.

Raises
DwfLibraryError – An error occurred while executing the operation.

sampleModeGet()→ DwfDigitalInSampleMode
Get the DigitalIn instrument sample mode.

110 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None

pydwf, Release 1.1.19

Returns
The currently configured sample mode.

Return type
DwfDigitalInSampleMode

Raises
DwfLibraryError – An error occurred while executing the operation.

sampleSensibleSet(compression_bits: int)→ None
Set the DigitalIn instrument sample sensible setting.

Todo: Figure out what this setting does.

Parameters
compression_bits (int) – (unknown)

Raises
DwfLibraryError – An error occurred while executing the operation.

sampleSensibleGet()→ int
Get the DigitalIn instrument sample sensible setting.

This setting is only used in Record mode.

It select the signals to be used for data compression in record acquisition mode.

Todo: Figure out what this setting does.

Returns
The sample sensible setting.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerPrefillSet(samples_before_trigger: int)→ None
Set the DigitalIn instrument trigger prefill setting, in samples.

This setting is only used in Record mode.

It determines the number of samples to acquire before arming in Record acquisition mode. The prefill
is used for recording with a trigger to make sure that at least the required number of samples are
collected before arming.

Todo: Figure out what this setting does, precisely.

Parameters
samples_before_trigger (int) – The prefill count, in samples.

Raises
DwfLibraryError – An error occurred while executing the operation.

4.6. Digital input instrument 111

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

triggerPrefillGet()→ int
Get the DigitalIn instrument trigger prefill setting, in samples.

Returns
The trigger prefill count, in samples.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerSourceInfo()→ List[DwfTriggerSource]
Get the valid DigitalIn instrument trigger sources.

Warning: This method is obsolete.

Use the generic DeviceControl.triggerInfo() method instead.

Returns
A list of valid trigger sources.

Return type
List[DwfTriggerSource]

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerSourceSet(trigger_source: DwfTriggerSource)→ None
Set DigitalIn instrument trigger source.

Parameters
trigger_source (DwfTriggerSource) – The trigger source to be configured.

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerSourceGet()→ DwfTriggerSource
Get the currently selected instrument trigger source.

Returns
The currently selected instrument trigger source.

Return type
DwfTriggerSource

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerSlopeSet(trigger_slope: DwfTriggerSlope)→ None
Select the DigitalIn instrument trigger slope.

Parameters
trigger_slope (DwfTriggerSlope) – The trigger slope to be selected.

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerSlopeGet()→ DwfTriggerSlope
Get the currently selected DigitalIn instrument trigger slope.

Returns
The currently selected DigitalIn instrument trigger slope.

112 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

pydwf, Release 1.1.19

Return type
DwfTriggerSlope

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerPositionInfo()→ int
Get DigitalIn trigger position info.

Returns
The maximum number of samples after the trigger.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerPositionSet(samples_after_trigger: int)→ None
Set DigitalIn instrument desired trigger position.

Parameters
samples_after_trigger (int) – The number of samples after the trigger.

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerPositionGet()→ int
Get DigitalIn instrument trigger position.

Returns
The currently configured number of samples after the trigger.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerAutoTimeoutInfo()→ Tuple[float, float, int]
Get DigitalIn instrument trigger auto-timeout range, in seconds.

Returns
The range and number of steps of the auto-timeout setting.

Return type
Tuple[float, float, int]

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerAutoTimeoutSet(auto_timeout: float)→ None
Set DigitalIn instrument trigger auto-timeout value, in seconds.

Parameters
auto_timeout (float) – The auto-timeout value to be configured, in seconds.

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerAutoTimeoutGet()→ float
Get DigitalIn instrument trigger auto-timeout value, in seconds.

Returns
The currently configured trigger auto-timeout value, in seconds.

Return type
float

4.6. Digital input instrument 113

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerInfo()→ Tuple[int, int, int, int]
Get DigitalIn detector trigger info.

Return the pins that support the different types of triggering. Each integer is a bitmask, representing
pins that can be used as low level, high level, rising edge, and falling edge triggers.

Returns
Digital pins that can be used as low level, high level, rising edge, and falling edge triggers,
respectively.

Return type
Tuple[int, int, int, int]

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerSet(level_low: int, level_high: int, edge_rise: int, edge_fall: int)→ None
Set DigitalIn trigger detector conditions.

The level_low and level_high settings effectively mask trigger detection events to clock cycles where
the selected pins are low or high, respectively.

The edge_rise and edge_fall indicate channels where the specific type of transition on any of the in-
cluded channels will lead to a trigger event, ar least if the level conditions specified by the level_low
and level_high settings are satisfied.

Parameters

• level_low (int) – The channels that are required to be low for a trigger event to occur
(bitfield).

• level_high (int) – The channels that are required to be high for a trigger event to
occur (bitfield).

• edge_rise (int) – The channels where a rising edge will cause a trigger event (bit-
field).

• edge_fall (int) – The channels where a falling edge will cause a trigger event (bit-
field).

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerGet()→ Tuple[int, int, int, int]
Get the configured DigitalIn trigger detector settings.

Returns
The currently configured level_low, level_high, edge_rise, and edge_fall settings.

Return type
Tuple[int, int, int, int]

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerResetSet(level_low: int, level_high: int, edge_rise: int, edge_fall: int)→ None
Configure DigitalIn trigger detector reset condition.

Parameters

• level_low (int) – The channels that are required to be low for a reset to occur (bit-
field).

• level_high (int) – The channels that are required to be high for a reset to occur
(bitfield).

114 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

• edge_rise (int) – The channels where a rising edge will cause a reset (bitfield).

• edge_fall (int) – The channels where a falling edge will cause a reset (bitfield).

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerCountSet(count: int, restart: int)→ None
Set the DigitalIn trigger detector count.

Todo: Figure out what this setting does.

Parameters

• count (int) – The event count.

• restart (int) – (to be documented)

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerLengthSet(min_length: float, max_length: float, sync_mode: int)→ None
Set the DigitalIn trigger detector length.

Todo: Figure out what this setting does.

Parameters

• min_length (float) – (to be documented)

• max_length (float) – (to be documented)

• sync_mode (int) – Synchronization mode:

– 0 — Normal.

– 1 — Timing: the min_length parameter specifies the bit length and the max_length
parameter specifies the timing length.

Used for UART, CAN protocols.

– 2 — PWM: the min_length parameter specifies the sampling time and the
max_length parameter specifies the timing length.

Used for 1-wire protocols.

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerMatchSet(pin: int, mask: int, value: int, bit_stuffing: int)→ None
Set DigitalIn trigger detector match.

Todo: Figure out what this setting does.

Configure the deserializer. The bits are left shifted. The mask and value should be specified accord-
ingly, in MSB-first order.

Parameters

• pin (int) – The pin to be deserialized.

• mask (int) – The mask pattern.

4.6. Digital input instrument 115

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

• value (int) – The bit pattern.

• bit_stuffing (int) – The bit stuffing count.

Raises
DwfLibraryError – An error occurred while executing the operation.

counterInfo()→ Tuple[int, float]
Get DigitalIn counter info.

counterSet(duration: float)→ None
Set DigitalIn counter duration.

counterGet()→ float
Get DigitalIn counter duration.

counterStatus()→ Tuple[float, float, int]
Get DigitalIn counter status.

mixedSet(enable: bool)→ None
Set mixed state.

Warning: This method is obsolete.

Todo: Figure out what this setting does.

Parameters
enable (bool) – (to be documented)

Raises
DwfLibraryError – An error occurred while executing the operation.

property device

Return the DwfDevice instance of which we are an attribute.

This is useful if we have a variable that contains a reference to a DwfDevice attribute, but we need the
DwfDevice itself.

Returns
The DwfDevice instance that this attribute belongs to.

Return type
DwfDevice

4.7 Digital output instrument

The DigitalOut instrument provides multiple channels of digital output on devices that support it, such as the
Analog Discovery, Analog Discovery 2, Analog Discovery 3, Analog Discovery Pro, and Digital Discovery. It
provides the functionality normally associated with a stand-alone digital pattern generator.

Todo: This section is currently incomplete.

It lacks a detailed discussion of how all the settings work.

116 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

pydwf, Release 1.1.19

4.7.1 Using the digital output instrument

To use the DigitalOut functionality you first need to initialize a DwfLibrary instance. Next, you open a specific
device. The device’s DigitalOut functionality can now be accessed via its digitalOut attribute, which is an
instance of the DigitalOut class.

For example:

from pydwf import DwfLibrary
from pydwf.utilities import openDwfDevice

dwf = DwfLibrary()

with openDwfDevice(dwf) as device:

Get a reference to the device's DigitalOut instrument.
digitalOut = device.digitalOut

Use the DigitalOut instrument.
digitalOut.reset()

Important: Both the DigitalIO and DigitalOut instruments provide an API to drive the same digital outputs.
The former provides a very simple API that can be used in cases where precise timing or realtime behavior is not
relevant, while the latter provides a more powerful, but also more complicated API that provides far greater control
over timing.

The rule for which device gets precedence is explained in a topic on the Digilent forum. In summary:

• For DIO channels where the DigitalIO instrument sets outputEnable to 1, the behavior of the channel is
determined by the DigitalIO instrument.

• For DIO channels where the DigitalIO instrument sets outputEnable to 0, and the output is set to 1, the
channel is in high-impedance (‘Z’) state.

• For DIO channels where the DigitalIO instrument sets outputEnable to 0, and the output is set to 0, the
behavior of the channel is determined by the DigitalOut instrument.

Thus, in order to use the DigitalOut instrument for a specific channel, the user must ensure that the DigitalIO
instrument sets both the outputEnable and output configuration bits to 0. In most circumstances it is not necessary
to do this explicitly, since this is the default setting of the DigitalIO instrument for each channel.

4.7.2 The DigitalOut instrument state machine

The DigitalOut instrument is controlled by a state machine. As an output sequence is prepared and executed, the
instrument goes through its various states.

The current state of the instrument is returned by the digitalOut.status() method, and is of type DwfState.

The figure below shows the states used by the DigitalOut instrument and the transitions between them:

Fig. 4: States of the DigitalOut instrument

The DigitalOut states are used as follows:

1. Ready

In this preparatory state, instrument settings can be changed that specify the behavior of the instrument in the
coming output sequence. If the auto-configure setting of the device is enabled (the default), setting changes
will automatically be transferred to the device. If not, an explicit call to the digitalOut.configure()
method is needed to transfer updated settings to the device.

4.7. Digital output instrument 117

https://forum.digilentinc.com/topic/22107-rules-of-precedence-for-digital-out-driving-instruments/

pydwf, Release 1.1.19

Once the instrument is properly configured, an output sequence can be started by calling the digitalOut.
configure() with the start parameter set to True. This will start the first stage of the output sequence by
entering the Armed state.

2. Armed

In this state the instrument continuously monitors the configured trigger input. As soon as a trigger event is
detected, the instrument proceeds to the Wait state.

3. Wait

In this state, the digital outputs are driven according to their Idle settings. The duration of the
wait state is configurable. Once this duration has passed, the instrument proceeds to the Running
state.

4. Running

In this state, the digital outputs are driven according to their individual configurations. This continues until
the run duration has been reached. The channel then proceeds to the Repeat state.

5. Repeat

Note: This is not a true state, in that there is no DwfState value that represents it. It is included
here to explain the control flow of the DigitalOut instrument state machine.

When an output run is finished, the repeat count is decremented.

If, after decrementing, the repeat count is unequal to zero, more output must be produced. If the
repeat trigger setting is True, the instrument proceeds to the Armed state; in that case, a trigger
is needed to start each of the output runs. If the repeat trigger setting is False, the instrument
proceeds immediately to the Wait state to start another output sequence; a trigger is only required
before the very first output run.

If, after decrementing, the repeat count did reach zero, the instrument becomes idle and proceeds
to the Done state.

6. Done

This state indicates that an output sequence has finished. In this state, the outputs are driven according to
their Idle setting.

From this state, it is possible to go back to the Ready state by performing any kind of configuration, or to
start a new output sequence.

4.7.3 DigitalOut instrument API overview

The DigitalOut instrument is quite complicated; 53 methods are provided to control its behavior. Below, we
categorize these methods and shortly introduce them. Detailed information on all methods can be found in the
DigitalOut class reference that follows.

Instrument control

Like all instruments supported by the Digilent Waveforms library, the DigitalOut instrument provides reset(),
configure(), and status() methods.

The reset() method resets the instrument.

The configure() method is used to explicitly transfer settings to the instrument, and/or to start a configured
operation.

The status() method returns the current DwfState of the DigitalOut instrument.

118 Chapter 4. The DwfDevice class and its attributes

pydwf, Release 1.1.19

Table 35: Instrument control (4 methods)

control operation type/unit methods
reset instrument n/a reset()
configure instrument n/a configure()
request instrument status DwfState status()
request instrument output status unknown statusOutput()

Channel count

This method returns the number of digital output channels.

Table 36: Channel count (1 method)

property type/unit method
channel count int count()

Instrument-level state machine settings

These settings determine the duration of the Wait and Running states, how many times the Wait/Running cycle
should be repeated, and whether a trigger must precede each Wait/Running cycle.

Table 37: State machine settings (13 methods)

setting type/unit methods
wait duration float [s] waitInfo() , –Set() , –Get()
run duration float [s] runInfo() , –Set() , –Get() , –Status()
repeat trigger bool repeatTriggerSet() , –Get()
repeat count int [-] repeatInfo() , –Set() , –Get() , –Status()

Trigger configuration

These settings configure the instrument trigger.

Table 38: Trigger configuration (5 methods)

setting type/unit methods
trigger source DwfTriggerSource triggerSourceInfo() , –Set() , –Get()
trigger slope DwfTriggerSlope triggerSlopeSet() , –Get()

Note: The triggerSourceInfo() method is obsolete. Use the generic DwfDevice.triggerInfo() method
instead.

4.7. Digital output instrument 119

pydwf, Release 1.1.19

Output settings

These settings determine the output behavior.

Table 39: Output settings (11 methods)

setting type/unit methods
enable bool enableSet() , –Get()
output DwfDigitalOutOutput outputInfo() , –Set() , –Get()
type DwfDigitalOutType typeInfo() , –Set() , –Get()
idle DwfDigitalOutIdle idleInfo() , –Set() , –Get()

Output pattern timing definition

These settings determine the per-channel output pattern timing in the Running state.

Table 40: Output pattern definition (14 methods)

setting type/unit methods
clock info float [Hz] internalClockInfo()
divider int [-] dividerInfo() , –Set() , –Get()
divider init int [-] dividerInitSet() , –Get()
counter int [-] counterInfo() , –Set() , –Get()
counter init int [-] counterInitSet() , –Get()
repetitition count int [-] repetitionInfo() , –Set() , –Get()

Data playback

These methods provide data upload playback by the DigitalOut instrument.

Table 41: Data playback (4 methods)

operation type/unit methods
data upload complicated dataInfo() , –Set()
play data upload bit string playDataSet()
play rate float [Hz] playRateSet()

4.7.4 DigitalOut reference

class DigitalOut

The DigitalOut class provides access to the digital output (pattern generator) instrument of a DwfDevice.

Attention: Users of pydwf should not create instances of this class directly.

It is instantiated during initialization of a DwfDevice and subsequently assigned to its public digitalOut
attribute for access by the user.

reset()→ None
Reset the DigitalOut instrument.

Raises
DwfLibraryError – An error occurred while executing the reset operation.

120 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/constants.html#None

pydwf, Release 1.1.19

configure(start: bool)→ None
Start or stop the DigitalOut instrument.

Parameters
start (int) – Whether to start/stop the instrument.

Raises
DwfLibraryError – An error occurred while executing the configure operation.

status()→ DwfState
Return the status of the DigitalOut instrument.

This method performs a status request to the DigitalOut instrument and receives its response.

Returns
The status of the DigitalOut instrument.

Return type
DwfState

Raises
DwfLibraryError – An error occurred while executing the status operation.

statusOutput()→ Tuple[int, int]
Get status output.

Notice:
This function is not documented in the official documentation, but it is present in the C header file.

Returns
The first entry is labeled ‘value’, the second is labeled ‘enable’ in the C header file.

Return type
Tuple[int, int]

Raises
DwfLibraryError – An error occurred while executing the statusOutput operation.

count()→ int
Get the DigitalOut instrument channel (digital pin) count.

Returns
The number of digital output channels.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

waitInfo()→ Tuple[float, float]
Get the DigitalOut instrument range for the Wait state duration, in seconds.

Returns
A tuple containing the minimal and maximal configurable Wait state duration, in sec-
onds.

Return type
Tuple[float, float]

Raises
DwfLibraryError – An error occurred while executing the operation.

waitSet(wait_duration: float)→ None
Set the DigitalOut instrument Wait state duration, in seconds.

4.7. Digital output instrument 121

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

pydwf, Release 1.1.19

Parameters
wait_duration (float) – Digital-out Wait state duration, in seconds.

Raises
DwfLibraryError – An error occurred while executing the operation.

waitGet()→ float
Get DigitalOut instrument Wait state duration, in seconds.

Returns
The Wait state duration, in seconds.

Return type
float

Raises
DwfLibraryError – An error occurred while executing the operation.

runInfo()→ Tuple[float, float]
Get the DigitalOut instrument range for the Running state duration, in seconds.

Returns
A tuple containing the minimal and maximal Running state duration, in seconds.

Return type
Tuple[float, float]

Raises
DwfLibraryError – An error occurred while executing the operation.

runSet(run_duration: float)→ None
Set the DigitalOut instrument Running state duration, in seconds.

Parameters
run_duration – The Running state duration, in seconds.

The value 0 is special; it means forever.

Raises
DwfLibraryError – An error occurred while executing the operation.

runGet()→ float
Get the DigitalOut instrument Running state duration, in seconds.

Returns
The Running state duration, in seconds.

Return type
float

Raises
DwfLibraryError – An error occurred while executing the operation.

runStatus()→ int
Get the DigitalOut instrument Running state duration time left, in clock cycles.

This value is internally expressed as an integer with 48-bit resolution, and is measured in integer clock
cycles. The C API returns it as a double-precision floating point number, to avoid using 64-bit integers.

Use the internalClockInfo() method to retrieve the clock frequency.

Returns
The number of clock cycles until the nest state transition of the DigitalOut instrument’s
state machine.

Return type
int

122 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Raises
DwfLibraryError – An error occurred while executing the operation.

repeatTriggerSet(repeat_trigger_flag: bool)→ None
Specify if each DigitalOut pulse sequence run should wait for its own trigger.

Parameters
repeat_trigger_flag (bool) – If True, not only the first, both also every successive
run of the pulse output sequence will wait until it receives a trigger.

Raises
DwfLibraryError – An error occurred while executing the operation.

repeatTriggerGet()→ bool
Get if each DigitalOut pulse sequence run should wait for its own trigger.

Returns
If True, not only the first, both also every successive run of the pulse output sequence will
wait until it receives a trigger.

Return type
bool

repeatInfo()→ Tuple[int, int]
Get the DigitalOut minimal and maximal repeat count for pulse-sequence runs.

Returns
A tuple containing the minimal and maximal repeat count for digital-out pulse-sequence
runs.

Return type
Tuple[int, int]

Raises
DwfLibraryError – An error occurred while executing the operation.

repeatSet(repeat: int)→ None
Set the DigitalOut repeat count for pulse-sequence runs.

Parameters
repeat (int) – Repeat count. The value 0 is special; it means forever.

Raises
DwfLibraryError – An error occurred while executing the operation.

repeatGet()→ int
Set the DigitalOut repeat count for pulse-sequence runs.

Returns
Repeat count. The value 0 is special; it means forever.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

repeatStatus()→ int
Get the DigitalOut count of repeats remaining for the currently active output sequence.

This number counts down as a digital output sequence is active.

Returns
The repeat count status.

Return type
int

4.7. Digital output instrument 123

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerSourceInfo()→ List[DwfTriggerSource]
Get the valid DigitalOut trigger sources.

Warning: This method is obsolete.

Use the generic DeviceControl.triggerInfo() method instead.

Returns
A list of valid the trigger sources.

Return type
List[DwfTriggerSource]

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerSourceSet(trigger_source: DwfTriggerSource)→ None
Set the DigitalOut trigger source.

Parameters
trigger_source (DwfTriggerSource) – The trigger source to be configured.

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerSourceGet()→ DwfTriggerSource
Get the currently selected instrument trigger source.

Returns
The currently selected instrument trigger source.

Return type
DwfTriggerSource

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerSlopeSet(trigger_slope: DwfTriggerSlope)→ None
Select the DigitalOut instrument trigger slope.

Parameters
trigger_slope (DwfTriggerSlope) – The trigger slope to be selected.

Raises
DwfLibraryError – An error occurred while executing the operation.

triggerSlopeGet()→ DwfTriggerSlope
Get the currently configured DigitalOut instrument trigger slope.

Returns
The currently selected DigitalOut instrument trigger slope.

Return type
DwfTriggerSlope

Raises
DwfLibraryError – An error occurred while executing the operation.

enableSet(channel_index: int, enable_flag: bool)→ None
Enable or disable a DigitalOut channel (pin).

Parameters

124 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

pydwf, Release 1.1.19

• channel_index (int) – The digital pin to enable or disable.

• enable_flag (bool) – Whether to enable or disable the digital output.

Raises
DwfLibraryError – An error occurred while executing the operation.

enableGet(channel_index: int)→ bool
Check if a specific DigitalOut channel (pin) is enabled for output.

Parameters
channel_index (int) – The digital pin.

Returns
Whether the digital pin is enabled as an output.

Return type
bool

Raises
DwfLibraryError – An error occurred while executing the operation.

outputInfo(channel_index: int)→ List[DwfDigitalOutOutput]
Get valid DigitalOut output choices (e.g. Push/Pull, tristate).

Returns
A list of valid output settings.

Return type
List[DwfDigitalOutOutput]

Raises
DwfLibraryError – An error occurred while executing the operation.

outputSet(channel_index: int, output_value: DwfDigitalOutOutput)→ None
Set DigitalOut output choice (e.g. Push/Pull, tristate).

Parameters

• channel_index (int) – The digital pin.

• output_value (DwfDigitalOutOutput) – The digital output setting.

Raises
DwfLibraryError – An error occurred while executing the operation.

outputGet(channel_index: int)→ DwfDigitalOutOutput
Get currently configured DigitalOut output (e.g. Push/Pull, tristate).

Parameters
channel_index (int) – The digital pin.

Returns
The digital output setting.

Return type
DwfDigitalOutOutput

Raises
DwfLibraryError – An error occurred while executing the operation.

typeInfo(channel_index: int)→ List[DwfDigitalOutType]
Get a list of valid DigitalOut output channel types.

Returns
A list of valid digital output channel types.

Return type
List[DwfDigitalOutType]

4.7. Digital output instrument 125

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List

pydwf, Release 1.1.19

Raises
DwfLibraryError – An error occurred while executing the operation.

typeSet(channel_index: int, output_type: DwfDigitalOutType)→ None
Select the DigitalOut output channel type.

Parameters

• channel_index (int) – The digital pin.

• output_type (DwfDigitalOutType) – The digital output channel type.

Raises
DwfLibraryError – An error occurred while executing the operation.

typeGet(channel_index: int)→ DwfDigitalOutType
Get the currently selected DigitalOut output channel type.

Parameters
channel_index (int) – The digital pin.

Returns
The digital output channel type.

Return type
DwfDigitalOutType

Raises
DwfLibraryError – An error occurred while executing the operation.

idleInfo(channel_index: int)→ List[DwfDigitalOutIdle]
Get valid DigitalOut idle output values.

Returns
A list of valid idle output values.

Return type
List[DwfDigitalOutIdle]

Raises
DwfLibraryError – An error occurred while executing the operation.

idleSet(channel_index: int, idle_mode: DwfDigitalOutIdle)→ None
Set the DigitalOut idle output value.

Parameters

• channel_index (int) – The digital pin.

• idle_mode (DwfDigitalOutIdle) – The idle output value.

Raises
DwfLibraryError – An error occurred while executing the operation.

idleGet(channel_index: int)→ DwfDigitalOutIdle
Get the currently configured idle output value.

Parameters
channel_index (int) – The digital pin.

Returns
The currently configured idle output value.

Return type
DwfDigitalOutIdle

Raises
DwfLibraryError – An error occurred while executing the operation.

126 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

internalClockInfo()→ float
Get the DigitalOut instrument clock frequency.

Returns
The digital-out clock frequency, in Hz.

Return type
float

Raises
DwfLibraryError – An error occurred while executing the operation.

dividerInfo(channel_index: int)→ Tuple[int, int]
Get the DigitalOut divider value range.

Returns
The range of valid divider settings.

Return type
Tuple[int, int]

Raises
DwfLibraryError – An error occurred while executing the operation.

dividerSet(channel_index: int, divider: int)→ None
Set the DigitalOut divider value.

Parameters

• channel_index (int) – The digital pin.

• divider (int) – The divider setting.

Raises
DwfLibraryError – An error occurred while executing the operation.

dividerGet(channel_index: int)→ int
Get the currently configured DigitalOut divider value.

Parameters
channel_index (int) – The digital pin.

Returns
The divider setting.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

dividerInitSet(channel_index: int, divider_init_value: int)→ None
Set the DigitalOut initial divider value.

Parameters

• channel_index (int) – The digital pin.

• divider_init_value (int) – The initial divider counter value.

Raises
DwfLibraryError – An error occurred while executing the operation.

dividerInitGet(channel_index: int)→ int
Get the currently configured DigitalOut initial divider value.

Parameters
channel_index (int) – The digital pin.

4.7. Digital output instrument 127

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Returns
The divider init setting.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

counterInfo(channel_index: int)→ Tuple[int, int]
Get the DigitalOut counter value range.

Parameters
channel_index (int) – The digital pin.

Returns
The range of valid counter settings.

Return type
Tuple[int, int]

Raises
DwfLibraryError – An error occurred while executing the operation.

counterSet(channel_index: int, low_count: int, high_count: int)→ None
Set the DigitalOut counter durations for both the low and high signal output levels.

Parameters

• channel_index (int) – The digital pin.

• low_count (int) – The number of cycles the signal should be Low.

• high_count (int) – The number of cycles the signal should be High.

Raises
DwfLibraryError – An error occurred while executing the operation.

counterGet(channel_index: int)→ Tuple[int, int]
Get the DigitalOut counter durations for both the low and high signal output levels.

Parameters
channel_index (int) – The digital pin.

Returns
The number of cycles the signal should be Low, High.

Return type
Tuple[int, int]

Raises
DwfLibraryError – An error occurred while executing the operation.

counterInitSet(channel_index: int, high_flag: bool, counter_init_value: int)→ None
Set the DigitalOut initial signal value and initial counter value.

Parameters

• channel_index (int) – The digital pin.

• high (bool) – Whether to start High (True) or Low (False).

• counter_init (int) – The initial counter setting.

Raises
DwfLibraryError – An error occurred while executing the operation.

128 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

counterInitGet(channel_index: int)→ Tuple[bool, int]
Get the DigitalOut initial signal value and initial counter value.

Parameters
channel_index (int) – The digital pin.

Returns
Whether to start High (True) or Low (False), and the initial counter setting.

Return type
Tuple [bool, int]

Raises
DwfLibraryError – An error occurred while executing the operation.

repetitionInfo(channel_index: int)→ int
Get maximum repetition count value.

The repetition count specifies how many times the counter should be reloaded. For pulse signals set
twice the desired value since each pulse is generated by two counter loads, low and high. It is available
with ADP3X50 and newer devices.

Parameters
channel_index (int) – The digital pin.

Returns
The maximum repetition value that can be configured.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

repetitionSet(channel_index: int, repeat: int)→ None
Set repetition count value.

The repetition count specifies how many times the counter should be reloaded. For pulse signals set
twice the desired value since each pulse is generated by two counter loads, low and high. It is available
with ADP3X50 and newer devices.

Parameters
channel_index (int) – The digital pin.

Returns
The maximum repetition value that can be configured.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

repetitionGet(channel_index: int)→ int
Get repetition count value.

The repetition count specifies how many times the counter should be reloaded. For pulse signals set
twice the desired value since each pulse is generated by two counter loads, low and high. It is available
with ADP3X50 and newer devices.

dataInfo(channel_index: int)→ int
Return the maximum buffer size for the specified DigitalOut channel, i.e., the number of custom data
bits.

Parameters
channel_index (int) – the channel for which to obtain the data bits count.

4.7. Digital output instrument 129

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Returns
The number of custom data bits that can be specified for the channel.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

dataSet(channel_index: int, bits: str, tristate: bool = False)→ None
Set the DigitalOut arbitrary output data.

This function also sets the counter initial, low and high value, according to the number of bits. The
data-bits are sent out in LSB-first order.

Parameters

• channel_index (int) – the channel for which to set the output data.

• bits (str) – The bits, as a string.

• tristate (bool) – Whether to interpret the string as a tristate signal.

Raises
DwfLibraryError – An error occurred while executing the operation.

playDataSet(bits: str, bits_per_sample: int, count_of_samples: int)→ None
Set the DigitalOut playback data.

The output can be PushPull, OpenDrain, or OpenSource. Tristate data is not supported.

Note: The DWF documentation explicitly states that this function is supported by the Digital Discov-
ery. (So, by implication, it’s probably not supported on anything else.)

Parameters

• bits (str) – string of ‘0’ and ‘1’ characters. Its length should be (bits_per_sample *
count_of_samples).

• bits_per_sample (int) – Bits per sample, should be 1, 2, 4, 8, or 16.

• count_of_samples (int) – Number of samples.

Raises
DwfLibraryError – An error occurred while executing the operation.

playUpdateSet(bits: str, index_of_sample: int, count_of_samples: int)→ None
Set the DigitalOut playback data.

Todo: This function is not sufficiently documented at this time.

playRateSet(playback_rate: float)→ None
Set the DigitalOut playback rate, in Hz.

Note: The DWF documentation explicitly states that this function is supported by the Digital Discov-
ery. (So, by implication, it’s probably not supported on anything else.)

Parameters
playback_rate (float) – The playback rate, in Hz.

130 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

pydwf, Release 1.1.19

Raises
DwfLibraryError – An error occurred while executing the operation.

property device

Return the DwfDevice instance of which we are an attribute.

This is useful if we have a variable that contains a reference to a DwfDevice attribute, but we need the
DwfDevice itself.

Returns
The DwfDevice instance that this attribute belongs to.

Return type
DwfDevice

4.8 Digital I/O

The DigitalIO functionality provides low-speed monitoring and control of the same digital I/O pins that can also
be controlled by the more powerful DigitalIn and DigitalOut instruments. The API provided here is much simpler
to use, but it can only accommodate use-cases that do not require triggering, precise timing, or very fast operation.

4.8.1 Using the digital I/O functionality

To use the DigitalIO functionality you first need to initialize a DwfLibrary instance. Next, you open a specific
device. The device’s DigitalIO functionality can now be accessed via its digitalIO attribute, which is an instance
of the DigitalIO class:

from pydwf import DwfLibrary
from pydwf.utilities import openDwfDevice

dwf = DwfLibrary()

with openDwfDevice(dwf) as device:

Get a reference to the device's DigitalIO functionality.
digitalIO = device.digitalIO

Use the DigitalIO functionality.
digitalIO.reset()

Important: Both the DigitalIO and DigitalOut instruments provide an API to drive the same digital outputs.
The former provides a very simple API that can be used in cases where precise timing or realtime behavior is not
relevant, while the latter provides a more powerful, but also more complicated API that provides far greater control
over timing.

The rule for which device gets precedence is explained in a topic on the Digilent forum. In summary:

• For DIO channels where the DigitalIO instrument sets outputEnable to 1, the behavior of the channel is
determined by the DigitalIO instrument.

• For DIO channels where the DigitalIO instrument sets outputEnable to 0, and the output is set to 1, the
channel is in high-impedance (‘Z’) state.

• For DIO channels where the DigitalIO instrument sets outputEnable to 0, and the output is set to 0, the
behavior of the channel is determined by the DigitalOut instrument.

4.8. Digital I/O 131

https://forum.digilentinc.com/topic/22107-rules-of-precedence-for-digital-out-driving-instruments/

pydwf, Release 1.1.19

Thus, in order to use the DigitalOut instrument for a specific channel, the user must ensure that the DigitalIO
instrument sets both the outputEnable and output configuration bits to 0. In most circumstances it is not necessary
to do this explicitly, since this is the default setting of the DigitalIO instrument for each channel.

4.8.2 DigitalIO reference

class DigitalIO

The DigitalIO class provides access to the static digital I/O functionality of a DwfDevice.

Attention: Users of pydwf should not create instances of this class directly.

It is instantiated during initialization of a DwfDevice and subsequently assigned to its public digitalIO
attribute for access by the user.

The class implements 3 generic methods: reset(), configure(), and status(), and 8 methods that
come in both 32- and 64-bits variants, where 32 and 64 refer to the maximum number of digital pins that the
methods can handle.

reset()→ None
Reset all DigitalIO settings to default values.

It sets the digital pins to tri-state (high impedance, not enabled) and output value to zero.

If autoconfiguration is enabled, the values are immediately applied.

Raises
DwfLibraryError – An error occurred while executing the reset operation.

configure()→ None
Configure the DigitalIO functionality.

This method transfers the settings to the Digilent Waveforms device. It is not needed if autoconfigura-
tion is enabled.

Raises
DwfLibraryError – An error occurred while executing the configure operation.

status()→ None
Read the DigitalIO status and input values from the device to the PC.

The status inquiry methods that follow will return the information that was read from the device when
this method was last called.

Note that the DigitalIO functionality is not managed by a state machine, so this method does not return
a value.

Raises
DwfLibraryError – An error occurred while executing the status operation.

outputEnableInfo()→ int
Get the digital pins that can be enabled for output as a bitmask.

The output enable state of a pin determines if it is driven as an output. If not, it is in high impedance
(also known as high Z) mode.

Only digital pins that are used as outputs should be enabled; digital pins that are used as inputs should
remain disabled (the default state after reset).

This is the 32-bits version of this method. For the 64-bits version, see outputEnableInfo64(). The
32 and 64 bits refer here to the maximum number of digital pins that the methods can handle.

132 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Returns
A bitmask of pins that can be used as outputs.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

outputEnableSet(output_enable: int)→ None
Set the digital pins that are enabled for output as a bitmask.

The output enable state of a pin determines if it is driven as an output. If not, it is in high impedance
(also known as high Z) mode.

Only digital pins that are used as outputs should be enabled; digital pins that are used as inputs should
remain disabled (the default state after reset).

This is the 32-bits version of this method. For the 64-bits version, see outputEnableSet64(). The
32 and 64 bits refer here to the maximum number of digital pins that the methods can handle.

Parameters
output_enable (int) – A bitmask of pins that will be used as outputs.

Raises
DwfLibraryError – An error occurred while executing the operation.

outputEnableGet()→ int
Get the digital pins that are enabled for output as a bitmask.

The output enable state of a pin determines if it is driven as an output. If not, it is in high impedance
(also known as high Z) mode.

Only digital pins that are used as outputs should be enabled; digital pins that are used as inputs should
remain disabled (the default state after reset).

This is the 32-bits version of this method. For the 64-bits version, see outputEnableGet64(). The
32 and 64 bits refer here to the maximum number of digital pins that the methods can handle.

Returns
A bitmask of pins that are currently configured as outputs.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

outputInfo()→ int
Get the digital pins that can be used as outputs, i.e., driven high or low, as a bitmask.

This is the 32-bits version of this method. For the 64-bits version, see outputInfo64(). The 32 and
64 bits refer here to the maximum number of digital pins that the methods can handle.

Returns
A bitmask of pins that can be used as outputs.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

outputSet(output: int)→ None
Set the digital pins that are currently driven high as a bitmask.

This is the 32-bits version of this method. For the 64-bits version, see outputSet64(). The 32 and
64 bits refer here to the maximum number of digital pins that the methods can handle.

4.8. Digital I/O 133

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

pydwf, Release 1.1.19

Parameters
output (int) – A bitmask of pins that will be driven high.

Raises
DwfLibraryError – An error occurred while executing the operation.

outputGet()→ int
Get the digital pins that are currently driven high as a bitmask.

This is the 32-bits version of this method. For the 64-bits version, see outputGet64(). The 32 and
64 bits refer here to the maximum number of digital pins that the methods can handle.

Returns
A bitmask of pins that are currently set to high.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

pullInfo()→ Tuple[int, int]
Get pull info.

Raises
DwfLibraryError – An error occurred while executing the operation.

pullSet(pull_up_mask: int, pull_down_mask: int)→ None
Set pull-up and pull-down channels.

Raises
DwfLibraryError – An error occurred while executing the operation.

pullGet()→ Tuple[int, int]
Get pull up/down configuration.

Raises
DwfLibraryError – An error occurred while executing the operation.

driveInfo()→ Tuple[float, float, int, int]
Get drive info.

Raises
DwfLibraryError – An error occurred while executing the operation.

driveSet(channel: int, amp: float, slew: int)→ None
Set channel drive.

Raises
DwfLibraryError – An error occurred while executing the operation.

driveGet(channel: int)→ Tuple[float, int]
Get channel drive settings.

Raises
DwfLibraryError – An error occurred while executing the operation.

inputInfo()→ int
Return the digital pins that can be used for input on the device as a bitmask.

This is the 32-bits version of this method. For the 64-bits version, see inputInfo64(). The 32 and
64 bits refer here to the maximum number of digital pins that the methods can handle.

Returns
A bitmask of pins that can be used as inputs.

134 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

inputStatus()→ int
Return the current state of the digital input pins on the device as a bitmask.

Before calling this method, call the status() method to read the current digital input status from the
device.

This is the 32-bits version of this method. For the 64-bits version, see inputStatus64(). The 32 and
64 bits refer here to the maximum number of digital pins that the methods can handle.

Returns
A bitmask of pins that are currently read as high.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

outputEnableInfo64()→ int
Get the digital pins that can be enabled for output as a bitmask.

The output enable state of a pin determines if it is driven as an output. If not, it is in high impedance
(also known as high Z) mode.

Only digital pins that are used as outputs should be enabled; digital pins that are used as inputs should
remain disabled (the default state after reset).

This is the 64-bits version of this method. For the 32-bits version, see outputEnableInfo(). The 32
and 64 bits refer here to the maximum number of digital pins that the methods can handle.

Returns
A bitmask of pins that can be used as outputs.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

outputEnableSet64(output_enable: int)→ None
Set the digital pins that are enabled for output as a bitmask.

The output enable state of a pin determines if it is driven as an output. If not, it is in high impedance
(also known as high Z) mode.

Only digital pins that are used as outputs should be enabled; digital pins that are used as inputs should
remain disabled (the default state after reset).

This is the 64-bits version of this method. For the 32-bits version, see outputEnableSet(). The 32
and 64 bits refer here to the maximum number of digital pins that the methods can handle.

Parameters
output_enable (int) – A bitmask of pins that will be used as outputs.

Raises
DwfLibraryError – An error occurred while executing the operation.

outputEnableGet64()→ int
Get the digital pins that are enabled for output as a bitmask.

The output enable state of a pin determines if it is driven as an output. If not, it is in high impedance
(also known as high Z) mode.

4.8. Digital I/O 135

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Only digital pins that are used as outputs should be enabled; digital pins that are used as inputs should
remain disabled (the default state after reset).

This is the 64-bits version of this method. For the 32-bits version, see outputEnableGet(). The 32
and 64 bits refer here to the maximum number of digital pins that the methods can handle.

Returns
A bitmask of pins that are currently configured as outputs.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

outputInfo64()→ int
Get the digital pins that can be used as outputs, i.e., driven high or low, as a bitmask.

This is the 64-bits version of this method. For the 32-bits version, see outputInfo(). The 32 and 64
bits refer here to the maximum number of digital pins that the methods can handle.

Returns
A bitmask of pins that can be used as outputs.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

outputSet64(output: int)→ None
Set the digital pins that are currently driven high as a bitmask.

This is the 64-bits version of this method. For the 32-bits version, see outputSet(). The 32 and 64
bits refer here to the maximum number of digital pins that the methods can handle.

Parameters
output (int) – A bitmask of pins that will be driven high.

Raises
DwfLibraryError – An error occurred while executing the operation.

outputGet64()→ int
Get the digital pins that are currently driven high as a bitmask.

This is the 64-bits version of this method. For the 32-bits version, see outputGet(). The 32 and 64
bits refer here to the maximum number of digital pins that the methods can handle.

Returns
A bitmask of pins that are currently set to high.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

inputInfo64()→ int
Return the digital pins that can be used for input on the device as a bitmask.

This is the 64-bits version of this method. For the 32-bits version, see inputInfo(). The 32 and 64
bits refer here to the maximum number of digital pins that the methods can handle.

Returns
A bitmask of pins that can be used as inputs.

Return type
int

136 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Raises
DwfLibraryError – An error occurred while executing the operation.

inputStatus64()→ int
Return the current state of the digital input pins on the device as a bitmask.

Before calling this method, call the status() method to read the current digital input status from the
device.

This is the 64-bits version of this method. For the 32-bits version, see inputStatus(). The 32 and
64 bits refer here to the maximum number of digital pins that the methods can handle.

Returns
A bitmask of pins that are currently read as high.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

property device

Return the DwfDevice instance of which we are an attribute.

This is useful if we have a variable that contains a reference to a DwfDevice attribute, but we need the
DwfDevice itself.

Returns
The DwfDevice instance that this attribute belongs to.

Return type
DwfDevice

4.9 UART protocol

The UART protocol support allows a Digilent Waveforms device to be used as a simple Universal Asynchronous
Receiver/Transmitter (UART).

Todo: This section is currently incomplete.

Specifically, the meaning of the parity error indication as returned by the rx() method is unclear. It needs to be
investigated and documented.

4.9.1 Using the UART protocol functionality

To use the UART protocol functionality you first need to initialize a DwfLibrary instance. Next, you open a specific
device. The device’s UART protocol functionality can now be accessed via its protocol.uart attribute, which
is an instance of the ProtocolUART class:

from pydwf import DwfLibrary
from pydwf.utilities import openDwfDevice

dwf = DwfLibrary()

with openDwfDevice(dwf) as device:
uart = device.protocol.uart
uart.reset()

4.9. UART protocol 137

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter

pydwf, Release 1.1.19

The UART protocol as implemented supports a single digital pin to act as a transmitter (TX), and a single digital
pin to act as a receiver (RX). Transmission and reception are relative to the viewpoint of the Digilent Waveforms
device; so ‘transmission’ means that the Digilent Waveforms device sends outgoing data, and ‘reception’ means
that the Digilent Waveforms device receives incoming data.

The UART protocol only supports the two basic serial TX and RX signals. Other signals commonly encountered
on serial ports (e.g., hardware handshaking using RTS/CTS) are not supported.

Note that while the UART API provides several methods to configure the serial communication (most notably, the
baudrate, number of data-bits, parity, and number of stop-bits), there is no way to read back the currently active
communication parameter values.

4.9.2 ProtocolUART reference

class ProtocolUART

The ProtocolUART class provides access to the UART protocol functionality of a DwfDevice.

Attention: Users of pydwf should not create instances of this class directly.

It is instantiated during initialization of a DwfDevice and subsequently accessible via its protocol.uart
attribute.

reset()→ None
Reset the UART protocol functionality.

Raises
DwfLibraryError – An error occurred while executing the reset operation.

rateSet(baudrate: float)→ None
Set the UART baudrate.

Parameters
baudrate (float) – The baud-rate used by the receiver and transmitter.

Commonly encountered values are 300, 600, 1200, 2400, 4800, 9600, 19200, 38400,
57600, and 115200, but other values are valid as well.

Raises
DwfLibraryError – An error occurred while executing the operation.

bitsSet(databits: int)→ None
Set the number of UART data bits.

Parameters
databits (int) – The number of data-bits used by the receiver and transmitter.

The most common choice is 8, but other values are possible.

Raises
DwfLibraryError – An error occurred while executing the operation.

paritySet(parity: int)→ None
Set the UART character parity.

Parameters
parity (int) – The parity used by the receiver and transmitter:

• 0 — no parity

• 1 — odd parity

• 2 — even parity

The most common choice is no parity (i.e., 0).

138 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Raises
DwfLibraryError – An error occurred while executing the operation.

polaritySet(polarity: int)→ None
Set the UART signal polarity.

Parameters
polarity (int) – The polarity used by the receiver and transmitter:

• 0 — normal

• 1 — inverted

The most common choice and default polarity is normal (i.e., 0).

Raises
DwfLibraryError – An error occurred while executing the operation.

stopSet(stopbits: float)→ None
Set the number of UART stop bits.

Parameters
stopbits (float) – The number of stop-bits used by the receiver and transmitter.

The most common choice is 1 stop-bit. Other values that are (rarely) encountered are 1.5
and 2 stop-bits.

Note that the actual number of stop-bits is the number specified here, rounded up to the
next highest integer.

The parameter is declared as a float in anticipation of future support for 1.5 stop-bits.

Raises
DwfLibraryError – An error occurred while executing the operation.

txSet(channel_index: int)→ None
Set the digital channel (pin) where the UART’s outgoing (TX) signal will be transmitted.

Parameters
channel_index (int) – The digital channel (pin) on which to transmit data.

Raises
DwfLibraryError – An error occurred while executing the operation.

rxSet(channel_index: int)→ None
Set the digital channel (pin) where the UART’s incoming (RX) signal is received.

Parameters
channel_index (int) – The digital channel (pin) on which to receive data.

Raises
DwfLibraryError – An error occurred while executing the operation.

tx(tx_data: bytes)→ None
Transmit data according to the currently active UART settings.

Parameters
tx_data (bytes) – The data to be transmitted.

Raises
DwfLibraryError – An error occurred while executing the operation.

rx(rx_max: int)→ Tuple[bytes, int]
Receive UART data or prepare for reception.

Important: This method must be called with value 0 prior to receiving data, to initialize the receiver.

4.9. UART protocol 139

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Parameters
rx_max (int) – If 0, initialize the receiver.

Otherwise, receive the specified number of characters.

Returns
Bytes received and parity error indication.

Return type
Tuple[bytes, int]

Todo: The meaning of the parity error indication is currently unclear. This needs to be investigated.

Raises
DwfLibraryError – An error occurred while executing the operation.

property device

Return the DwfDevice instance of which we are an attribute.

This is useful if we have a variable that contains a reference to a DwfDevice attribute, but we need the
DwfDevice itself.

Returns
The DwfDevice instance that this attribute belongs to.

Return type
DwfDevice

4.10 SPI protocol

The SPI protocol support allows a Digilent Waveforms device to be used as a simple SPI bus master.

Todo: This section is currently incomplete.

It does not properly explain the meaning of some of the settings that influence the behavior of the SPI functionality,
and the difference between the several write/read methods.

4.10.1 Using the SPI protocol functionality

To use the SPI protocol functionality you first need to initialize a DwfLibrary instance. Next, you open a specific
device. The device’s SPI protocol functionality can now be accessed via its protocol.spi attribute, which is an
instance of the ProtocolSPI class:

from pydwf import DwfLibrary
from pydwf.utilities import openDwfDevice

dwf = DwfLibrary()

with openDwfDevice(dwf) as device:
spi = device.protocol.spi
spi.reset()

140 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface

pydwf, Release 1.1.19

4.10.2 ProtocolSPI reference

class ProtocolSPI

The ProtocolSPI class provides access to the SPI protocol functionality of a DwfDevice.

Attention: Users of pydwf should not create instances of this class directly.

It is instantiated during initialization of a DwfDevice and subsequently accessible via its protocol.spi
attribute.

reset()→ None
Reset the SPI protocol support.

Raises
DwfLibraryError – An error occurred while executing the reset operation.

frequencySet(frequency: float)→ None
Set the SPI frequency, in Hz.

Parameters
frequency (float) – SPI frequency, in Hz.

Raises
DwfLibraryError – An error occurred while executing the operation.

clockSet(channel_index: int)→ None
Set the digital channel (pin) for the SPI clock signal.

Parameters
channel_index (int) – The digital channel (pin) where the SPI clock signal will be
generated.

Raises
DwfLibraryError – An error occurred while executing the operation.

dataSet(spi_data_bit: int, channel_index: int)→ None
Set the digital channel (pin) for an SPI data bit.

Parameters

• spi_data_bit (int) – The data bit to configure:

– 0 — DQ0 / MOSI / SISO

– 1 — DQ1 / MISO

– 2 — DQ2

– 3 — DQ3

• channel_index (int) – The digital channel (pin) for this data bit.

Raises
DwfLibraryError – An error occurred while executing the operation.

idleSet(spi_data_bit: int, idle_mode: DwfDigitalOutIdle)→ None
Set the idle behavior for an SPI data bit.

Parameters

• spi_data_bit (int) – The data bit to configure:

– 0 — DQ0 / MOSI / SISO

– 1 — DQ1 / MISO

– 2 — DQ2

4.10. SPI protocol 141

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

– 3 — DQ3

• idle_mode (DwfDigitalOutIdle) – The idle behavior of this bit.

Raises
DwfLibraryError – An error occurred while executing the operation.

modeSet(spi_mode: int)→ None
Set the SPI mode.

Parameters
spi_mode (int) – The values for CPOL (polarity) and CPHA (phase) to use with the
attached slave device:

• 0 — CPOL = 0, CPHA = 0

• 1 — CPOL = 0, CPHA = 1

• 2 — CPOL = 1, CPHA = 0

• 3 — CPOL = 1, CPHA = 1

Refer to the slave device’s datasheet to select the correct value.

Raises
DwfLibraryError – An error occurred while executing the operation.

orderSet(bit_order: int)→ None
Set the SPI data bit order.

Parameters
bit_order (int) – Select the bit order of each word sent out:

• 1 — MSB first, LSB last

• 0 — LSB first, MSB last

Raises
DwfLibraryError – An error occurred while executing the operation.

delaySet(start: int, cmd: int, word: int, stop: int)→ None
Set the SPI delays.

Raises
DwfLibraryError – An error occurred while executing the operation.

selectSet(channel: int, level: int)→ None
Set SPI device select channel and level.

Raises
DwfLibraryError – An error occurred while executing the operation.

select(channel_index: int, level: int)→ None
Set the chip select (CS) status.

Parameters

• channel_index (int) – The digital channel (pin) for the Chip Select signal.

• level (int) – The Chip Select level to configure.

– 0 — low

– 1 — high

– -1 — Z (high impedance)

The CS (chip select) is an active-low signal, from the SPI bus master to a specific SPI
slave device. Before starting a bus request, the master should set CS to 0 for the chip
it wants to talk to.

142 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Each slave on an SPI bus has its own CS line. At most one of them should be selected
at any time.

Raises
DwfLibraryError – An error occurred while executing the operation.

writeRead(transfer_type: int, bits_per_word: int, tx: List[int])→ List[int]
Write and read multiple SPI data-words, with up to 8 bits per data-word.

Parameters

• transfer_type (int) –

– 0 — SISO

– 1 — MOSI/MISO

– 2 — dual

– 4 — quad

• bits_per_word (int) – The number of bits per data-word (1. . . 8).

• tx (List[int]) – The data-words to write.

Returns
The data-words received.

Return type
List[int]

Raises
DwfLibraryError – An error occurred while executing the write/read operation.

writeRead16(transfer_type: int, bits_per_word: int, tx: List[int])→ List[int]
Write and read multiple SPI data-words, with up to 16 bits per data-word.

Parameters

• transfer_type (int) –

– 0 — SISO

– 1 — MOSI/MISO

– 2 — dual

– 4 — quad

• bits_per_word (int) – The number of bits per data-word (1. . . 16).

• tx (list[int]) – The data-words to write.

Returns
The data-words received.

Return type
List[int]

Raises
DwfLibraryError – An error occurred while executing the write/read operation.

writeRead32(transfer_type: int, bits_per_word: int, tx: List[int])→ List[int]
Write and read multiple SPI data-words, with up to 32 bits per data-word.

Parameters

• transfer_type (int) –

– 0 — SISO

– 1 — MOSI/MISO

4.10. SPI protocol 143

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

– 2 — dual

– 4 — quad

• bits_per_word (int) – The number of bits per data-word (1. . . 32).

• tx (List[int]) – The data-words to write.

Returns
The data-words received.

Return type
List[int]

Raises
DwfLibraryError – An error occurred while executing the write/read operation.

read(transfer_type: int, bits_per_word: int, number_of_words: int)→ List[int]
Read multiple SPI data-words, with up to 8 bits per data-word.

Parameters

• transfer_type (int) –

– 0 — SISO

– 1 — MOSI/MISO

– 2 — dual

– 4 — quad

• bits_per_word (int) – The number of bits per data-word (1. . . 8).

• number_of_words (int) – The number of data-words to read.

Returns
The data-words received.

Return type
List[int]

Raises
DwfLibraryError – An error occurred while executing the read operation.

readOne(transfer_type: int, bits_per_word: int)→ int
Read a single SPI data-word, with up to 32 bits.

Parameters

• transfer_type (int) –

– 0 — SISO

– 1 — MOSI/MISO

– 2 — dual

– 4 — quad

• bits_per_word (int) – The number of bits of the data-word (1. . . 32).

Returns
The data-word received.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the read operation.

144 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

read16(transfer_type: int, bits_per_word: int, number_of_words: int)→ List[int]
Read multiple SPI data-words, with up to 16 bits per data-word.

Parameters

• transfer_type (int) –

– 0 — SISO

– 1 — MOSI/MISO

– 2 — dual

– 4 — quad

• bits_per_word (int) – The number of bits per data-word (1. . . 16).

• number_of_words (int) – The number of data-words to read.

Returns
The data-words received.

Return type
List[int]

Raises
DwfLibraryError – An error occurred while executing the read operation.

read32(transfer_type: int, bits_per_word: int, number_of_words: int)→ List[int]
Read multiple SPI data-words, with up to 32 bits per data-word.

Parameters

• transfer_type (int) –

– 0 — SISO

– 1 — MOSI/MISO

– 2 — dual

– 4 — quad

• bits_per_word (int) – The number of bits per data-word (1. . . 32).

• number_of_words (int) – The number of data-words to read.

Returns
The data-words received.

Return type
List[int]

Raises
DwfLibraryError – An error occurred while executing the read operation.

write(transfer_type: int, bits_per_word: int, tx: List[int])→ None
Write multiple SPI data-words, with up to 32 bits per data-word.

Parameters

• transfer_type (int) –

– 0 — SISO

– 1 — MOSI/MISO

– 2 — dual

– 4 — quad

• bits_per_word (int) – The number of bits per data-word (1. . . 32).

4.10. SPI protocol 145

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

• tx (List[int]) – The data-words to write.

Raises
DwfLibraryError – An error occurred while executing the write operation.

writeOne(transfer_type: int, bits_per_word: int, tx: int)→ None
Write a single SPI data-word, with up to 32 bits.

Parameters

• transfer_type (int) –

– 0 — SISO

– 1 — MOSI/MISO

– 2 — dual

– 4 — quad

• bits_per_word (int) – The number of bits of the data-word (1. . . 32).

• tx (int) – The data-word to write.

Raises
DwfLibraryError – An error occurred while executing the write operation.

write16(transfer_type: int, bits_per_word: int, tx: List[int])→ None
Write multiple SPI data-words, with up to 16 bits per data-word.

Parameters

• transfer_type (int) –

– 0 — SISO

– 1 — MOSI/MISO

– 2 — dual

– 4 — quad

• bits_per_word (int) – The number of bits per data-word (1. . . 16).

• tx (List[int]) – The data-words to write.

Raises
DwfLibraryError – An error occurred while executing the write operation.

write32(transfer_type: int, bits_per_word: int, tx: List[int])→ None
Write multiple SPI data-words, with up to 32 bits per data-word.

Parameters

• transfer_type (int) –

– 0 — SISO

– 1 — MOSI/MISO

– 2 — dual

– 4 — quad

• bits_per_word (int) – The number of bits per data-word (1. . . 32).

• tx (List[int]) – The data-words to write.

Raises
DwfLibraryError – An error occurred while executing the write operation.

146 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

cmdWriteRead(command_bits: int, command_value: int, dummy_bits: int, transfer_type: int,
bits_per_word: int, tx: List[int])→ List[int]

Send command and write and read multiple SPI data-words, with up to 8 bits per data-word.

Parameters

• command_bits (int) – The number of command bits.

• command_value (int) – The command value.

• dummy_bits (int) – The number of dummy bits before the data transfer.

• transfer_type (int) –

– 0 — SISO

– 1 — MOSI/MISO

– 2 — dual

– 4 — quad

• bits_per_word (int) – The number of bits per data-word (1. . . 8).

• tx (List[int]) – The data-words to write.

Returns
The data-words received.

Return type
List[int]

Raises
DwfLibraryError – An error occurred while executing the write/read operation.

cmdWriteRead16(command_bits: int, command_value: int, dummy_bits: int, transfer_type: int,
bits_per_word: int, tx: List[int])→ List[int]

Send command and write and read multiple SPI data-words, with up to 16 bits per data-word.

Parameters

• command_bits (int) – The number of command bits.

• command_value (int) – The command value.

• dummy_bits (int) – The number of dummy bits before the data transfer.

• transfer_type (int) –

– 0 — SISO

– 1 — MOSI/MISO

– 2 — dual

– 4 — quad

• bits_per_word (int) – The number of bits per data-word (1. . . 16).

• tx (list[int]) – The data-words to write.

Returns
The data-words received.

Return type
List[int]

Raises
DwfLibraryError – An error occurred while executing the write/read operation.

4.10. SPI protocol 147

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

cmdWriteRead32(command_bits: int, command_value: int, dummy_bits: int, transfer_type: int,
bits_per_word: int, tx: List[int])→ List[int]

Send command and write and read multiple SPI data-words, with up to 32 bits per data-word.

Parameters

• command_bits (int) – The number of command bits.

• command_value (int) – The command value.

• dummy_bits (int) – The number of dummy bits before the data transfer.

• transfer_type (int) –

– 0 — SISO

– 1 — MOSI/MISO

– 2 — dual

– 4 — quad

• bits_per_word (int) – The number of bits per data-word (1. . . 32).

• tx (List[int]) – The data-words to write.

Returns
The data-words received.

Return type
List[int]

Raises
DwfLibraryError – An error occurred while executing the write/read operation.

cmdRead(command_bits: int, command_value: int, dummy_bits: int, transfer_type: int, bits_per_word:
int, number_of_words: int)→ List[int]

Send command and read multiple SPI data-words, with up to 8 bits per data-word.

Parameters

• command_bits (int) – The number of command bits.

• command_value (int) – The command value.

• dummy_bits (int) – The number of dummy bits before the data transfer.

• transfer_type (int) –

– 0 — SISO

– 1 — MOSI/MISO

– 2 — dual

– 4 — quad

• bits_per_word (int) – The number of bits per data-word (1. . . 8).

• number_of_words (int) – The number of data-words to read.

Returns
The data-words received.

Return type
List[int]

Raises
DwfLibraryError – An error occurred while executing the read operation.

148 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

cmReadOne(command_bits: int, command_value: int, dummy_bits: int, transfer_type: int, bits_per_word:
int)→ int

Send command and read a single SPI data-word, with up to 32 bits.

Parameters

• command_bits (int) – The number of command bits.

• command_value (int) – The command value.

• dummy_bits (int) – The number of dummy bits before the data transfer.

• transfer_type (int) –

– 0 — SISO

– 1 — MOSI/MISO

– 2 — dual

– 4 — quad

• bits_per_word (int) – The number of bits of the data-word (1. . . 32).

Returns
The data-word received.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the read operation.

cmdRead16(command_bits: int, command_value: int, dummy_bits: int, transfer_type: int, bits_per_word:
int, number_of_words: int)→ List[int]

Send command and read multiple SPI data-words, with up to 16 bits per data-word.

Parameters

• command_bits (int) – The number of command bits.

• command_value (int) – The command value.

• dummy_bits (int) – The number of dummy bits before the data transfer.

• transfer_type (int) –

– 0 — SISO

– 1 — MOSI/MISO

– 2 — dual

– 4 — quad

• bits_per_word (int) – The number of bits per data-word (1. . . 16).

• number_of_words (int) – The number of data-words to read.

Returns
The data-words received.

Return type
List[int]

Raises
DwfLibraryError – An error occurred while executing the read operation.

cmdRead32(command_bits: int, command_value: int, dummy_bits: int, transfer_type: int, bits_per_word:
int, number_of_words: int)→ List[int]

Send command and read multiple SPI data-words, with up to 32 bits per data-word.

4.10. SPI protocol 149

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Parameters

• command_bits (int) – The number of command bits.

• command_value (int) – The command value.

• dummy_bits (int) – The number of dummy bits before the data transfer.

• transfer_type (int) –

– 0 — SISO

– 1 — MOSI/MISO

– 2 — dual

– 4 — quad

• bits_per_word (int) – The number of bits per data-word (1. . . 32).

• number_of_words (int) – The number of data-words to read.

Returns
The data-words received.

Return type
List[int]

Raises
DwfLibraryError – An error occurred while executing the read operation.

cmdWrite(command_bits: int, command_value: int, dummy_bits: int, transfer_type: int, bits_per_word:
int, tx: List[int])→ None

Send command and write multiple SPI data-words, with up to 32 bits per data-word.

Parameters

• command_bits (int) – The number of command bits.

• command_value (int) – The command value.

• dummy_bits (int) – The number of dummy bits before the data transfer.

• transfer_type (int) –

– 0 — SISO

– 1 — MOSI/MISO

– 2 — dual

– 4 — quad

• bits_per_word (int) – The number of bits per data-word (1. . . 32).

• tx (List[int]) – The data-words to write.

Raises
DwfLibraryError – An error occurred while executing the write operation.

cmdWriteOne(command_bits: int, command_value: int, dummy_bits: int, transfer_type: int,
bits_per_word: int, tx: int)→ None

Send command and write a single SPI data-word, with up to 32 bits.

Parameters

• command_bits (int) – The number of command bits.

• command_value (int) – The command value.

• dummy_bits (int) – The number of dummy bits before the data transfer.

• transfer_type (int) –

150 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

– 0 — SISO

– 1 — MOSI/MISO

– 2 — dual

– 4 — quad

• bits_per_word (int) – The number of bits of the data-word (1. . . 32).

• tx (int) – The data-word to write.

Raises
DwfLibraryError – An error occurred while executing the write operation.

cmdWrite16(command_bits: int, command_value: int, dummy_bits: int, transfer_type: int,
bits_per_word: int, tx: List[int])→ None

Send command and write multiple SPI data-words, with up to 16 bits per data-word.

Parameters

• command_bits (int) – The number of command bits.

• command_value (int) – The command value.

• dummy_bits (int) – The number of dummy bits before the data transfer.

• transfer_type (int) –

– 0 — SISO

– 1 — MOSI/MISO

– 2 — dual

– 4 — quad

• bits_per_word (int) – The number of bits per data-word (1. . . 16).

• tx (List[int]) – The data-words to write.

Raises
DwfLibraryError – An error occurred while executing the write operation.

cmdWrite32(command_bits: int, command_value: int, dummy_bits: int, transfer_type: int,
bits_per_word: int, tx: List[int])→ None

Send command and write multiple SPI data-words, with up to 32 bits per data-word.

Parameters

• command_bits (int) – The number of command bits.

• command_value (int) – The command value.

• dummy_bits (int) – The number of dummy bits before the data transfer.

• transfer_type (int) –

– 0 — SISO

– 1 — MOSI/MISO

– 2 — dual

– 4 — quad

• bits_per_word (int) – The number of bits per data-word (1. . . 32).

• tx (List[int]) – The data-words to write.

Raises
DwfLibraryError – An error occurred while executing the write operation.

4.10. SPI protocol 151

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

property device

Return the DwfDevice instance of which we are an attribute.

This is useful if we have a variable that contains a reference to a DwfDevice attribute, but we need the
DwfDevice itself.

Returns
The DwfDevice instance that this attribute belongs to.

Return type
DwfDevice

4.11 I2C protocol

The I2C protocol support allows a Digilent Waveforms device to be used as a simple I2C bus master.

Todo: This section is currently incomplete.

It does not properly explain some of the settings that influence the behavior of the I2C functionality, and the differ-
ence between the several write/read methods.

4.11.1 Using the I2C protocol functionality

To use the I2C protocol functionality you first need to initialize a DwfLibrary instance. Next, you open a specific
device. The device’s I2C protocol functionality can now be accessed via its protocol.i2c attribute, which is an
instance of the ProtocolI2C class:

from pydwf import DwfLibrary
from pydwf.utilities import openDwfDevice

dwf = DwfLibrary()

with openDwfDevice(dwf) as device:
i2c = device.protocol.i2c
i2c.reset()

4.11.2 ProtocolI2C reference

class ProtocolI2C

The ProtocolI2C class provides access to the I2C protocol functionality of a DwfDevice.

Attention: Users of pydwf should not create instances of this class directly.

It is instantiated during initialization of a DwfDevice and subsequently accessible via its protocol.i2c
attribute.

reset()→ None
Reset the I2C protocol instrument.

Raises
DwfLibraryError – An error occurred while executing the reset operation.

152 Chapter 4. The DwfDevice class and its attributes

https://en.wikipedia.org/wiki/I%C2%B2C
https://docs.python.org/3/library/constants.html#None

pydwf, Release 1.1.19

clear()→ bool
Clear the I2C bus.

Detect and try to solve an I2C bus lockup condition.

Todo: The precise behavior of this method needs to be understood and documented.

Returns
True if the bus is clear after the operation, False otherwise.

Return type
bool

Raises
DwfLibraryError – An error occurred while executing the operation.

stretchSet(stretch_enable: int)→ None
Set I2C stretch behavior.

Todo: The precise behavior of this method needs to be understood and documented.

Parameters
stretch_enable (bool) – True to enable stretch, False to disable.

Raises
DwfLibraryError – An error occurred while executing the operation.

rateSet(data_rate: float)→ None
Set the I2C data rate, in Hz.

Parameters
data_rate (float) – I2C data rate. Often-encountered rates are 100 kHz and 400 kHz,
but many modern I2C devices support higher data rates. Check the datasheet of your
device.

The default value is 100 kHz.

Raises
DwfLibraryError – An error occurred while executing the operation.

timeoutSet(timeout: float)→ None
Set the I2C timeout, in seconds.

Parameters
timeout (float) – I2C timeout. The default value is 1 second.

Raises
DwfLibraryError – An error occurred while executing the operation.

readNakSet(nak_last_read_byte: int)→ None
Set read NAK state.

Todo: The precise behavior of this method needs to be understood and documented.

Parameters
nak_last_read_byte (int) – (undocumented)

Raises
DwfLibraryError – An error occurred while executing the operation.

4.11. I2C protocol 153

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

sclSet(channel_index: int)→ None
Set the digital channel (pin) where the I2C clock (SCL) signal is transmitted.

Parameters
channel_index (int) – The digital channel (pin) on which to generate the SCL clock.

Raises
DwfLibraryError – An error occurred while executing the operation.

sdaSet(channel_index: int)→ None
Set the digital channel (pin) where the I2C data (SDA) signal is transmitted/received.

Parameters
channel_index (int) – The digital channel (pin) on which to send/receive SDA data.

Raises
DwfLibraryError – An error occurred while executing the operation.

writeRead(address: int, tx: List[int], number_of_rx_bytes: int)→ Tuple[int, List[int]]
Perform a combined I2C write/read operation.

Parameters

• address (int) – The I2C address of the target device.

• tx (List[int]) – The octets to send.

• number_of_rx_bytes (int) – The number of octets to receive.

Returns
The first element is the NAK indication; the second element is a list of octet values re-
ceived.

Return type
Tuple[int, List[int]]

Raises
DwfLibraryError – An error occurred while executing the operation.

read(address: int, number_of_words: int)→ Tuple[int, List[int]]
Perform an I2C read operation.

Parameters

• address (int) – The I2C address of the target device.

• number_of_words (int) – The number of octets to receive.

Returns
The first element is the NAK indication; the second element is a list of octet values re-
ceived.

Return type
Tuple[int, List[int]]

Raises
DwfLibraryError – An error occurred while executing the operation.

write(address: int, tx: List[int])→ int
Perform an I2C write operation.

Parameters

• address (int) – The I2C address of the target device.

• tx (List[int]) – The octets to send.

Returns
The NAK indication.

154 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

writeOne(address: int, tx: int)→ int
Perform an I2C write operation of a single octet.

Parameters

• address (int) – The I2C address of the target device.

• tx (int) – The single octet to send.

Returns
The NAK indication.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

spyStart()→ None
Start I2C spy.

Raises
DwfLibraryError – An error occurred while executing the operation.

spyStatus(max_data_size: int)→ Tuple[int, int, List[int], int]
Get I2C spy status.

Returns
A tuple (start, stop, data-values, nak-indicator).

Return type
Tuple[int, int, List[int], int]

Raises
DwfLibraryError – An error occurred while executing the operation.

property device

Return the DwfDevice instance of which we are an attribute.

This is useful if we have a variable that contains a reference to a DwfDevice attribute, but we need the
DwfDevice itself.

Returns
The DwfDevice instance that this attribute belongs to.

Return type
DwfDevice

4.12 CAN protocol

The CAN protocol support allows a Digilent Waveforms device to be used as a simple CAN bus device.

Todo: This section is currently incomplete.

A bit of background on CAN would be helpful.

This section does not yet properly explain the polarity setting.

4.12. CAN protocol 155

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://en.wikipedia.org/wiki/CAN_bus

pydwf, Release 1.1.19

It also does not yet explain the vID, extended, and remote parameters / return values used in the rx() and tx()
methods.

4.12.1 Using the CAN protocol functionality

To use the CAN protocol functionality you first need to initialize a DwfLibrary instance. Next, you open a specific
device. The device’s CAN protocol functionality can now be accessed via its protocol.can attribute, which is
an instance of the ProtocolCAN class:

from pydwf import DwfLibrary
from pydwf.utilities import openDwfDevice

dwf = DwfLibrary()

with openDwfDevice(dwf) as device:
can = device.protocol.can
can.reset()

4.12.2 ProtocolCAN reference

class ProtocolCAN

The ProtocolCAN class provides access to the CAN bus protocol functionality of a DwfDevice.

Attention: Users of pydwf should not create instances of this class directly.

It is instantiated during initialization of a DwfDevice and subsequently accessible via its protocol.can
attribute.

reset()→ None
Reset the CAN bus protocol functionality.

Raises
DwfLibraryError – An error occurred while executing the reset operation.

rateSet(data_rate: float)→ None
Set the CAN bus data rate, in Hz.

Parameters
data_rate (float) – The data-rate used by the receiver and transmitter.

Raises
DwfLibraryError – An error occurred while executing the operation.

polaritySet(polarity: bool)→ None
Set the CAN bus polarity.

Parameters
polarity (bool) – If True, set polarity to high.

Raises
DwfLibraryError – An error occurred while executing the operation.

txSet(channel_index: int)→ None
Set the digital channel (pin) where the outgoing (TX) signal will be transmitted.

Parameters
channel_index (int) – The digital channel (pin) on which to transmit data.

156 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Raises
DwfLibraryError – An error occurred while executing the operation.

rxSet(channel_index: int)→ None
Set the digital channel (pin) where the incoming (RX) signal is received.

Parameters
channel_index (int) – The digital channel (pin) on which to receive data.

Raises
DwfLibraryError – An error occurred while executing the operation.

tx(v_id: int, extended: bool, remote: bool, data: bytes)→ None
Transmit outgoing CAN bus data.

Parameters

• v_id (int) – (to be documented).

• extended (bool) – (to be documented).

• remote (bool) – (to be documented).

• data (bytes) – The data to be transmitted. Should be at most 8 bytes.

Raises

• PyDwfError – A request to transmit more than 8 bytes was made.

• DwfLibraryError – An error occurred while executing the operation.

rx(size: int = 8)→ Tuple[int, bool, bool, bytes, int]
Receive incoming CAN bus data.

Returns
A tuple (vID, extended, remote, data, status)

Return type
Tuple[int, bool, bool, bytes, int]

Raises
DwfLibraryError – An error occurred while executing the operation.

property device

Return the DwfDevice instance of which we are an attribute.

This is useful if we have a variable that contains a reference to a DwfDevice attribute, but we need the
DwfDevice itself.

Returns
The DwfDevice instance that this attribute belongs to.

Return type
DwfDevice

4.13 SWD protocol

The SWD protocol support allows a Digilent Waveforms device to be used as a simple SWD (Serial Wire Debug)
device.

Todo: This section is currently incomplete.

A bit of background on SWD would be helpful.

4.13. SWD protocol 157

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

4.13.1 Using the SWD protocol functionality

To use the SWD protocol functionality you first need to initialize a DwfLibrary instance. Next, you open a specific
device. The device’s SWD protocol functionality can now be accessed via its protocol.swd attribute, which is
an instance of the ProtocolSWD class:

from pydwf import DwfLibrary
from pydwf.utilities import openDwfDevice

dwf = DwfLibrary()

with openDwfDevice(dwf) as device:
swd = device.protocol.swd
swd.reset()

4.13.2 ProtocolSWD reference

class ProtocolSWD

The ProtocolSWD class provides access to the SWD bus protocol functionality of a DwfDevice.

Attention: Users of pydwf should not create instances of this class directly.

It is instantiated during initialization of a DwfDevice and subsequently accessible via its protocol.swd
attribute.

reset()→ None
Reset the SWD protocol functionality.

Raises
DwfLibraryError – An error occurred while executing the reset operation.

rateSet(data_rate: float)→ None
Set the SWD bus data rate, in Hz.

Parameters
data_rate (float) – The data-rate used by the receiver and transmitter.

Raises
DwfLibraryError – An error occurred while executing the operation.

clockSet(channel: int)→ None
Set the SWD clock channel.

Parameters
channel (int) – The SWD clock channel.

Raises
DwfLibraryError – An error occurred while executing the operation.

ioSet(channel: int)→ None
Set the SWD I/O channel.

Parameters
channel (int) – The SWD I/O channel.

Raises
DwfLibraryError – An error occurred while executing the operation.

158 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

turnSet(turn_setting: int)→ None
Set the SWD ‘turn’ parameter.

Parameters
turn_setting (int) – The turn setting.

Raises
DwfLibraryError – An error occurred while executing the operation.

trailSet(trail_setting: int)→ None
Set the SWD ‘trail’ parameter.

Parameters
trail_setting (int) – The trail setting.

Raises
DwfLibraryError – An error occurred while executing the operation.

parkSet(park_setting: int)→ None
Set the SWD ‘park_setting’ parameter.

Parameters
park_setting (int) – The park setting.

Raises
DwfLibraryError – An error occurred while executing the operation.

nakSet(nak_setting: int)→ None
Set the SWD ‘nak_setting’ parameter.

Parameters
nak_setting (int) – The nak setting.

Raises
DwfLibraryError – An error occurred while executing the operation.

ioIdleSet(io_idle_setting: int)→ None
Set the SWD ‘I/O idle’ parameter.

Parameters
io_idle_setting (int) – The I/O idle setting.

Raises
DwfLibraryError – An error occurred while executing the operation.

clear(reset_value: int, trail_value)→ None
Clear the SWD bus.

Parameters

• reset_value (int) – The reset value.

• trail_value (int) – The trail value.

Raises
DwfLibraryError – An error occurred while executing the operation.

write(port: int, a32: int, write_data: int)→ int
Perform an SWD write.

Parameters

• port (int) –

– 0 — DataPort

– 1 — AccessPort

• a32 (int) – Address bits 3:2.

4.13. SWD protocol 159

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

• write_data – Data to write.

Returns
Acknowledgement bits: 1=OK, 2=WAIT, 4=FAILURE.

Return type
int

Raises
DwfLibraryError – An error occurred while executing the operation.

read(port: int, a32: int)→ Tuple[int, int, bool]
Perform an SWD read.

Parameters

• port (int) –

– 0 — DataPort

– 1 — AccessPort

• a32 (int) – Address bits 3:2.

Returns

The first element of the tuple is the acknowledgement bits: 1=OK, 2=WAIT,
4=FAILURE.

The second element of the tuple is the data word read. The third element of the tuple
indicates if the CRC was correct (parity check).

Return type
Tuple[int, int, bool]

Raises
DwfLibraryError – An error occurred while executing the operation.

property device

Return the DwfDevice instance of which we are an attribute.

This is useful if we have a variable that contains a reference to a DwfDevice attribute, but we need the
DwfDevice itself.

Returns
The DwfDevice instance that this attribute belongs to.

Return type
DwfDevice

160 Chapter 4. The DwfDevice class and its attributes

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CHAPTER

FIVE

PYDWF EXCEPTIONS

The PyDwfError and DwfLibraryError exceptions are used to report errors from pydwf to user programs.

5.1 Using the pydwf exceptions

The PyDwfError and DwfLibraryError exceptions are defined in the pydwf.core.auxiliary.exceptions module. The
top-level pydwf package imports both of them from that module to make them available to user scripts. To use
either of them, they should be imported from the top-level pydwf package:

from pydwf import DwfLibrary, PyDwfError, DwfLibraryError

dwf = DwfLibrary()

try:
use_pydwf(dwf)

except DwfLibraryError as e:
print("An error occurred at the C library level:", e)

except PyDwfError as e:
print("An error occurred at the Python module level:", e)

5.2 Error handling in the pydwf package

Python provides exceptions to handle errors, which is quite different from the lower level return-value based mech-
anism used in the C API. Fortunately, it is possible to turn the low-level errors reported by the C API functions into
Python exceptions.

To do this, the pydwf package inspects the return value of each call to the C API, and, in case of an error (i.e.,
a return value unequal to 1), it raises a DwfLibraryError exception that contains both the DWERC error code
of the last function called and its corresponding textual description, as obtained by calling the FDwfGetLastError
and FDwfGetLastErrorMsg functions in the shared library.

5.3 Exceptions raised by the pydwf package

Almost all exceptions raised by pydwf are a result of a failure reported by the underlying C library. However, there
are a few circumstances where pydwf detects an error condition before or after such a call was made. Such errors
are handled by raising a PyDwfError exception, which derives from Python’s standard Exception class.

Fig. 1: Inheritance diagram of pydwf exceptions

As the inheritance diagram shows, the DwfLibraryError exception type derives from PyDwfError. This makes it
easy to catch any pydwf error in code:

161

https://docs.python.org/3/library/exceptions.html#Exception

pydwf, Release 1.1.19

from pydwf import DwfLibrary, PyDwfError

dwf = DwfLibrary()

try:
use_pydwf(dwf)

except PyDwfError as e:
print("An error occurred at the C library -or- Python module level:", e)

5.4 pydwf exceptions reference

class PyDwfError

A PyDwfError exception represents any error in pydwf (caused by the underlying C API or otherwise).

It is a trivial (empty) specialization of the built-in Exception class.

class DwfLibraryError

A DwfLibraryError exception represents an error reported by one of the DWF C library functions.

This class derives from PyDwfError, making it easier for scripts to catch any exception originating in pydwf.

The following attributes are provided:

code

DWF error code as reported by the C library, if available.

Type
Optional[DwfErrorCode]

msg

DWF error message as reported by the C library, if available. It may contain multiple single-line
messages, separated by a newline character.

Type
Optional[str]

162 Chapter 5. pydwf exceptions

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str

CHAPTER

SIX

PYDWF ENUMERATION TYPES

Throughout pydwf, enumeration types are used as parameters or return values. They are generally used when a
parameter or return value can take on a small number of specific values.

6.1 Using the pydwf enumeration types

The enumeration types are defined in the pydwf.core.auxiliary.enum_types module. They are Python equivalents
of the 27 enumerations defined in the dwf.h header file provided by Digilent.

Note:
pydwf does not replicate the obsolete enumerations TRIGCOND and STS that are defined in the C header
file. TRIGCOND has been replaced by DwfTriggerSlope; STS has been replaced by DwfState.

The definitions in the header file do not use C enum types, but rather use a typedef to define a type name that is an
alias for either int or unsigned char, followed by a number of constant declarations. For example:

// instrument states:
typedef unsigned char DwfState;
const DwfState DwfStateReady = 0;
const DwfState DwfStateConfig = 4;
const DwfState DwfStatePrefill = 5;
const DwfState DwfStateArmed = 1;
const DwfState DwfStateWait = 7;
const DwfState DwfStateTriggered = 3;
const DwfState DwfStateRunning = 3;
const DwfState DwfStateDone = 2;

The enumeration type names in the C library are a mix between different naming styles. For reasons of consistently,
we decided to rename the types in pydwf ; the table below shows the correspondence between C and Python names.

163

pydwf, Release 1.1.19

Table 1: Correspondence between libdwf and pydwf enumeration type
names

libdwf name pydwf name used by
DWFERC DwfErrorCode DwfLibrary.getLastError() method
ENUMFILTER DwfEnumFilter DeviceEnum.enumerateDevices()

method
DwfEnumConfigInfo DwfEnumConfigInfo DeviceEnum.configInfo() method
DEVID DwfDeviceID DeviceEnum.deviceType() method
DEVVER DwfDeviceVersion DeviceEnum.deviceType() method
DwfParam DwfDeviceParameter DwfLibrary, DwfDevice methods
DwfWindow DwfWindow DwfLibrary methods
DwfState DwfState all 4 main instruments; AnalogImpedance
TRIGSRC DwfTriggerSource all 4 main instruments; DeviceControl
DwfTriggerSlope DwfTriggerSlope all 4 main instruments
ACQMODE DwfAcquisitionMode AnalogIn and DigitalIn instruments
FILTER DwfAnalogInFilter AnalogIn instrument
DwfAnalogCoupling DwfAnalogCoupling AnalogIn instrument
TRIGTYPE DwfAnalogInTriggerType AnalogIn instrument
TRIGLEN DwfAnalogInTriggerLengthConditionAnalogIn instrument
FUNC DwfAnalogOutFunction AnalogOut instrument
AnalogOutNode DwfAnalogOutNode AnalogOut instrument
DwfAnalogOutMode DwfAnalogOutMode AnalogOut instrument
DwfAnalogOutIdle DwfAnalogOutIdle AnalogOut instrument
DwfDigitalInClock-
Source

DwfDigitalInClockSource DigitalIn instrument

DwfDigitalInSample-
Mode

DwfDigitalInSampleMode DigitalIn instrument

DwfDigitalOutOutput DwfDigitalOutOutput DigitalOut instrument
DwfDigitalOutType DwfDigitalOutType DigitalOut instrument
DwfDigitalOutIdle DwfDigitalOutIdle DigitalOut instrument, ProtocolSPI sup-

port
ANALOGIO DwfAnalogIO AnalogIO functionality
DwfAnalogImpedance DwfAnalogImpedance AnalogImpedance.statusMeasure()

method
DwfDmm DwfDmm not currently used

Note: The DwfDmm type is defined, but not yet used by any API. It appears to be geared towards support for DMM
functionality offered by the ADP 5250 device.

The top-level pydwf package imports the enumeration types from pydwf.core.auxiliary.enum_types to make them
available to user scripts. To use these types, you should import the ones you need from the top-level pydwf package:

Here, we import all 27 pydwf enumeration types.
In practical scripts, only a few of these will be imported.

from pydwf import (DwfErrorCode, DwfEnumFilter, DwfEnumConfigInfo, DwfDeviceID,
DwfDeviceVersion, DwfDeviceParameter, DwfWindow, DwfState,
DwfTriggerSource, DwfTriggerSlope, DwfAcquisitionMode,
DwfAnalogInFilter, DwfAnalogCoupling, DwfAnalogInTriggerType,
DwfAnalogInTriggerLengthCondition, DwfAnalogOutFunction,
DwfAnalogOutNode, DwfAnalogOutMode, DwfAnalogOutIdle,
DwfDigitalInClockSource, DwfDigitalInSampleMode,
DwfDigitalOutOutput, DwfDigitalOutType, DwfDigitalOutIdle,
DwfAnalogIO, DwfAnalogImpedance, DwfDmm)

164 Chapter 6. pydwf enumeration types

pydwf, Release 1.1.19

6.2 pydwf enumeration classes reference

class DwfErrorCode

Enumeration type for error reporting constants of the DWF API.

This type is used by the DwfLibrary.getLastError() method to report the error condition of the most
recent C API call.

In pydwf, it is only used as the type of the code field of DwfLibraryError instances.

In the C API, this type is called ‘DWFERC’, and it is represented as an int.

NoErc = 0

No error occurred.

UnknownError = 1

Call waiting on pending API time out.

ApiLockTimeout = 2

Call waiting on pending API time out.

AlreadyOpened = 3

Device already opened.

NotSupported = 4

Device not supported.

InvalidParameter0 = 16

Invalid parameter sent in API call.

InvalidParameter1 = 17

Invalid parameter sent in API call.

InvalidParameter2 = 18

Invalid parameter sent in API call.

InvalidParameter3 = 19

Invalid parameter sent in API call.

InvalidParameter4 = 20

Invalid parameter sent in API call.

Note: This value is not listed in the most recent version of the documentation.

class DwfEnumFilter

Enumeration type for device class constants, used during device enumeration.

This type is used by the DeviceEnum.enumerateDevices() and DeviceEnum.enumerateStart()
methods to constrain the type of devices that will be enumerated.

In the C API, this type is called ‘ENUMFILTER’, and it is represented as an int.

All = 0

Enumerate all available devices.

DEVID = 1

Use devic to filter specific devices.

Type = 134217728

Use filters below (0x08000000).

6.2. pydwf enumeration classes reference 165

pydwf, Release 1.1.19

USB = 1

Enumerate USB devices.

Network = 2

Enumerate Network devices.

AXI = 4

Enumerate embedded devices (used when running on an ADP 3x50 device).

Remote = 16777216

Enumerate remote table devices (0x01000000).

Audio = 33554432

Enumerate sound card devicess (0x02000000).

Demo = 67108864

Enumerate demo devices (0x04000000).

class DwfEnumConfigInfo

Enumeration type for device configuration parameter type constants.

This type lists the device parameters that can vary between different device configurations of the same device.
It is used exclusively by the DeviceEnum.configInfo() method.

In the C API, this type is represented as an int.

TooltipText = -1

Tooltip text.

Maximum length: 2048 characters.

Note: This value is not officially documented. Its existence was revealed in a message on the Digilent
forum.

OtherInfoText = -2

Other info text.

Maximum length: 256 characters.

Note: This value is not officially documented. Its existence was revealed in a message on the Digilent
forum.

AnalogInChannelCount = 1

Number of analog input channels.

AnalogOutChannelCount = 2

Number of analog output channels.

AnalogIOChannelCount = 3

Number of analog power supply channels.

Note: This is a different number than the number of channels reported by the AnalogIO.
channelCount() method.

DigitalInChannelCount = 4

Number of digital input channels.

166 Chapter 6. pydwf enumeration types

https://forum.digilentinc.com/topic/21720-small-issue-and-questions-about-device-configurations/#comment-62717
https://forum.digilentinc.com/topic/21720-small-issue-and-questions-about-device-configurations/#comment-62717
https://forum.digilentinc.com/topic/21720-small-issue-and-questions-about-device-configurations/#comment-62717
https://forum.digilentinc.com/topic/21720-small-issue-and-questions-about-device-configurations/#comment-62717

pydwf, Release 1.1.19

DigitalOutChannelCount = 5

Number of digital output channels.

DigitalIOChannelCount = 6

Number of digital I/O channels.

AnalogInBufferSize = 7

Analog in buffer size, in samples.

AnalogOutBufferSize = 8

Analog out buffer size, in samples.

DigitalInBufferSize = 9

Digital in buffer size, in samples.

DigitalOutBufferSize = 10

Digital out buffer size, in samples.

class DwfDeviceID

Enumeration type for device ID constants.

This type is used by the DeviceEnum.deviceType()method to report the type of a previously enumerated
device.

In the C API, this type is called ‘DEVID’, and it is represented as an int.

EExplorer = 1

Electronics Explorer devices.

Discovery = 2

Analog Discovery (1) devices.

Discovery2 = 3

Analog Discovery 2 devices.

DDiscovery = 4

Digital Discovery devices.

ADP3X50 = 6

Analog Discovery Pro devices.

Eclypse = 7

Eclypse devices.

ADP5250 = 8

ADP5250 devices.

DPS3340 = 9

DPS 3340 devices.

class DwfDeviceVersion

Enumeration type for device version (i.e., hardware revision) constants.

This type is used by the DeviceEnum.deviceType()method to report the hardware revision of a previously
enumerated device.

Note: The device revision list given here is not complete; it does not cover all devices.

In the C API, this type is called ‘DEVVER’, and it is represented as an int.

EExplorerC = 2

Electronics Explorer devices, revision C.

6.2. pydwf enumeration classes reference 167

pydwf, Release 1.1.19

EExplorerE = 4

Electronics Explorer devices, revision E.

EExplorerF = 5

Electronics Explorer devices, revision F.

DiscoveryA = 1

Discovery devices, revision A.

DiscoveryB = 2

Discovery devices, revision B.

DiscoveryC = 3

Discovery devices, revision C.

class DwfDeviceParameter

Enumeration type for device parameter constants.

Device parameters are miscellaneous integer settings that influence the behavior of a device.

The different device parameters are selected by one of the constant values defined here.

This type is used to select device parameters, either to set/get global defaults using the DwfLibrary, or to to
set/get parameter values on a specific, previously opened device DwfDevice.

In the C API, this type is called ‘DwfParam’, and it is represented as an int.

KeepOnClose = 1

Keep the device running after close.

Warning: This value is obsolete. Use OnClose instead.

Note: This value is not listed in the most recent version of the documentation.

UsbPower = 2

USB power behavior if AUX power is connected.

Possible values:

• 0 — Disable USB power.

• 1 — Keep USB power enabled.

This setting is implemented on the Analog Discovery 2.

Note: This value is not listed in the most recent version of the documentation.

LedBrightness = 3

Set multicolor LED brightness.

The Digital Discovery features a multi-color LED. It is normally blue in case the device is not currently
controlled by software, or green if it is.

Setting this parameter from 0 to 100 changes the LED’s relative brightness, in percents. This can be
useful, for example, in a lab with sensitive optics that would preferably be completely dark.

On the Analog Discovery 2, this setting has no effect.

168 Chapter 6. pydwf enumeration types

pydwf, Release 1.1.19

OnClose = 4

Define behavior on close.

Possible values:

• 0 — On close, continue.

• 1 — On close, stop the device outputs but keep the device operational to prevent temperature drifts.

• 2 — On close, shut down the device to minimize power consumption.

AudioOut = 5

Enable or disable audio output.

Possible values:

• 0 — Disable audio output.

• 1 — Enable audio output (default).

This setting is implemented on the Analog Discovery and the Analog Discovery 2.

UsbLimit = 6

USB power limit.

The value ranges from 0 to 1000, in mA. The value -1 denotes no limit. Recommended value is in the
600—1000 mA range.

This setting is implemented on the Analog Discovery and the Analog Discovery 2.

AnalogOut = 7

Enable or disable analog output.

Possible values:

• 0 — Disable analog output.

• 1 — Enable analog output.

This setting is implemented on the Analog Discovery Pro 3x50.

Frequency = 8

100 MHz.

This setting is implemented on the Digital Discovery and Analog Discovery Pro 3x50.

Type
Adjust system frequency in Hz. Default

ExtFreq = 9

10 MHz.

This setting is implemented on the Analog Discovery Pro 3x50.

Type
Specify for input or set reference output frequency in Hz. Default

ClockMode = 10

This parameter is undocumented.

Todo: The meaning of this parameter needs to be understood.

Possible values:

• 0 — Use internal oscillator (default).

• 1 — Enable reference output on trigger-1 channel.

• 2 — Use reference input from trigger-1 channel.

6.2. pydwf enumeration classes reference 169

pydwf, Release 1.1.19

• 3 — Use trigger-1 as reference I/O.

This setting is implemented on the Analog Discovery Pro 3x50.

TempLimit = 11

Specify the over temperature threshold in degree Celcius on devices which support such option.

Todo: The meaning of this parameter needs to be understood.

FreqPhase = 12

Specify the system clock phase which is useful for device synchronization when a reference input clock
is used.

Todo: The meaning of this parameter needs to be understood.

class DwfWindow

Enumeration type for signal processing windows.

Rectangular = 0

Rectangular window, a.k.a. no window.

Triangular = 1

Triangular window.

Hamming = 2

Hamming window.

Hann = 3

Hann window.

Cosine = 4

Cosine window.

BlackmanHarris = 5

Blackman-Harris window.

FlatTop = 6

Flat-top window.

Kaiser = 7

Kaiser window.

class DwfState

Enumeration type for instrument state constants, for instruments that are controlled by an internal state-
machine.

The following instrument APIs are controlled by a state machine:

• AnalogIn

• AnalogOut — independent state machine for each channel

• DigitalIn

• DigitalOut

• AnalogImpedance

This type is used to return the current state from their status() methods: AnalogIn.status(), AnalogOut.
status(), DigitalIn.status(), DigitalOut.status(), and AnalogImpedance.status().

Note: The enumeration values Triggered and Running have identical integer values (3).

170 Chapter 6. pydwf enumeration types

pydwf, Release 1.1.19

The state name Triggered is used for capture instruments (AnalogIn, DigitalIn), while Running is used
for signal generation instruments (AnalogOut, DigitalOut).

In the C API, this type is represented as an unsigned char.

Ready = 0

The instrument is idle, waiting to be configured or started.

Config = 4

The instrument is being configured.

Prefill = 5

The instrument is collecting data prior to arming itself, so it can deliver pre-trigger samples.

Armed = 1

The instrument is collecting samples and waiting for the trigger.

Wait = 7

The signal generation instrument is waiting before its next run.

Triggered = 3

The capture instrument is triggered and collecting data.

Running = 3

The signal generation instrument is running (generating signals).

Done = 2

The instrument has completed a measurement or signal-generating sequence.

class DwfTriggerSource

Enumeration type for trigger source constants.

This type is used by the DeviceControl functionality to configure an external trigger and by the AnalogIn,
AnalogOut, DigitalIn, and DigitalOut instruments to select a trigger source. The AnalogIn instrument can
also use this type to configure a trigger as a sampling source.

In the C API, this type is called ‘TRIGSRC’, and it is represented as an unsigned char.

None_ = 0

No trigger configured (device starts immediately).

The trigger pin is high impedance (input). This is the default setting.

PC = 1

PC (software) trigger. This can be used, for example, to synchronously start multiple instruments.

DetectorAnalogIn = 2

AnalogIn trigger detector.

DetectorDigitalIn = 3

DigitalIn trigger detector.

AnalogIn = 4

AnalogIn instrument trigger. The trigger level is high when the instrument is running.

DigitalIn = 5

DigitalIn instrument trigger. The trigger level is high when the instrument is running.

DigitalOut = 6

DigitalOut instrument trigger. The trigger level is high when the instrument is running.

AnalogOut1 = 7

AnalogOut instrument trigger 1 start. The trigger level is high when the instrument is running.

6.2. pydwf enumeration classes reference 171

pydwf, Release 1.1.19

AnalogOut2 = 8

AnalogOut instrument trigger 2 start. The trigger level is high when the instrument is running.

AnalogOut3 = 9

AnalogOut instrument trigger 3 start. The trigger level is high when the instrument is running.

AnalogOut4 = 10

AnalogOut instrument trigger 4 start. The trigger level is high when the instrument is running

External1 = 11

External trigger signal #1.

External2 = 12

External trigger signal #2.

External3 = 13

External trigger signal #3.

External4 = 14

External trigger signal #4.

High = 15

High (undocumented).

Low = 16

Low (undocumented).

Clock = 17

Clock (undocumented).

class DwfTriggerSlope

Enumeration type for trigger slope constants.

This type is used by the AnalogIn, AnalogOut, DigitalIn, and DigitalOut instruments to select the trigger
slope.

In addition, the AnalogIn instrument uses it to select the slope of the sampling clock.

In the C API, this type is represented as an int.

Rise = 0

Rising trigger slope.

Fall = 1

Falling trigger slope.

Either = 2

Either rising or falling trigger slope.

class DwfAcquisitionMode

Enumeration type for acquisition mode constants.

This type is used by the AnalogIn and DigitalIn instruments. These instruments support multiple acquisition
modes that are appropriate for different data acquisition tasks.

In the C API, this type is called ‘ACQMODE’, and it is represented as an int.

Single = 0

Perform a single buffer acquisition.

Re-arm the instrument for the next capture after the data is fetched to the host using the instrument-
specific status() method: AnalogIn.status() or DigitalIn.status().

Note: The difference with the Single1 mode is unclear.

172 Chapter 6. pydwf enumeration types

pydwf, Release 1.1.19

ScanShift = 1

Perform a continuous acquisition in FIFO style.

The trigger setting is ignored.

The last sample is at the end of the buffer. The instrument’s statusSamplesValid() method gives the
number of the acquired samples, which will increase until reaching the buffer size. After that, the
waveform image is shifted for every new sample.

ScanScreen = 2

Perform continuous acquisition, circularly writing samples into the buffer.

This is similar to a heart-monitor display.

The trigger setting is ignored.

The instrument’s statusIndexWrite() method gives the buffer write position.

Record = 3

Perform acquisition for the length of time set by the instrument’s recordLengthSet() method.

Overs = 4

Overscan mode.

Note: This value is not listed in the most recent version of the documentation.

Single1 = 5

Perform a single buffer acquisition.

Note: The difference with the Single mode is unclear.

class DwfAnalogInFilter

Enumeration type for analog input filter constants.

This type is used by the AnalogIn instrument to select a filtering algorithm for the input and trigger channels.

The AnalogIn instrument’s ADC always captures samples at the maximum possible rate. If data acquisition
at a lower sampling rate is requested, the resampling can be handled in several different ways.

The most obvious choice is averaging. This will suppress high-frequency noise, which is often a good thing,
but sometimes it is desirable to know that high-frequency noise is present in the signal, and the averaging
may hide that fact.

For that reason, the decimation filter is available, which simply selects a single sample captured at high fre-
quency when resampling to a lower frequency. The signal-to-noise ratio (SNR) will suffer, but the presence
of high-frequency noise (outliers) will be more easily seen in the resampled data.

Todo: Examine the MinMax filter choice; it is not currently understood.

In the C API, this type is called ‘FILTER’, and it is represented as an int.

Decimate = 0

Decimation filter. Store every N’th ADC conversion, where N = ADC frequency / acquisition fre-
quency.

Average = 1

Averaging filter. Store the average of N ADC conversions.

MinMax = 2

Min/max filter. Store, interleaved, the minimum and maximum values, of 2 * N concersions.

6.2. pydwf enumeration classes reference 173

pydwf, Release 1.1.19

AverageFit = 3

Averaging fit filter.

Note: This value is not listed in the most recent version of the documentation.

class DwfAnalogCoupling

Enumeration type for analog coupling configuration.

DC = 0

DC coupling.

AC = 1

AC coupling.

class DwfAnalogInTriggerType

Enumeration type for analog input trigger mode constants.

This type is used by the AnalogIn instrument to specify the trigger type.

In the C API, this type is called ‘TRIGTYPE’, and it is represented as an int.

Edge = 0

Edge trigger type.

Pulse = 1

Pulse trigger type.

Transition = 2

Transition trigger type.

Window = 3

Window trigger type.

class DwfAnalogInTriggerLengthCondition

Enumeration type for analog input trigger length condition constants.

This type is used by the AnalogIn instrument to specify the trigger length condition.

In the C API, this type is called ‘TRIGLEN’, and it is represented as an int.

Less = 0

Trigger length condition ‘less’.

Timeout = 1

Trigger length condition ‘timeout’.

More = 2

Trigger length condition ‘more’.

class DwfAnalogOutFunction

Enumeration type for analog output waveform-shape function constants.

This type is used by the AnalogOut instrument to represent the wave-shape produced on an analog output
channel node. The nine fixed waveform shape options are shown below.

174 Chapter 6. pydwf enumeration types

pydwf, Release 1.1.19

0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0
DC

0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0
Sine

0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0
Square

0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

sig
na

l [
-]

Triangle

0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0
RampUp

0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0
RampDown

0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0
Pulse

0.00 0.25 0.50 0.75 1.00
time [period]

1.0

0.5

0.0

0.5

1.0
Trapezium

0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0
SinePower

DwfAnalogOutFunction waveforms
symmetry = +50

In the C API, this type is called ‘FUNC’, and it is represented as an unsigned char.

DC = 0

DC (constant signal) waveform shape. The signal level varies between -1 and 1.

Sine = 1

Sinusoid waveform shape. The signal level varies between -1 and 1.

Square = 2

Square waveform shape. The signal level varies between -1 and 1.

Triangle = 3

Triangle waveform shape. The signal level varies between -1 and 1.

RampUp = 4

Ramp Up waveform shape. The signal level varies between -1 and 1.

RampDown = 5

Ramp Down waveform shape. The signal level varies between -1 and 1.

Noise = 6

Noise waveform shape. The signal level is uniformly distributed between -1 and 1.

Pulse = 7

Pulse waveform shape. The signal level varies between 0 and 1.

Trapezium = 8

Trapezium waveform shape. The signal level varies between -1 and 1.

SinePower = 9

Sinusoid Power waveform shape. The signal level varies between -1 and 1.

6.2. pydwf enumeration classes reference 175

pydwf, Release 1.1.19

CustomPattern = 28

Generate waveform from custom samples.

It provides constant sample rate, supporting integer divisions of the system frequency.

Note: This description is taken verbatim from the documentation (dwfsdk.pdf). It is unclear what it
means.

PlayPattern = 29

Generate waveform in stream play style. It provides constant sample rate.

Note: This description is taken verbatim from the documentation (dwfsdk.pdf). It is unclear what it
means.

Custom = 30

Generate waveform from custom samples.

Optimizes for average requested frequency, sample output lengths may vary by one system frequency
period.

Note: This description is taken verbatim from the documentation (dwfsdk.pdf). It is unclear what it
means.

Play = 31

Generate waveform in stream play style. Optimizes for average requested frequency.

Note: This description is taken verbatim from the documentation (dwfsdk.pdf). It is unclear what it
means.

class DwfAnalogOutNode

Enumeration type for analog output node type constants.

This type is used by the AnalogOut instrument to represent the node types associated with each output
channel.

In the C API, this type is called ‘AnalogOutNode’ (without the Dwf prefix), and it is represented as an int.

Carrier = 0

Carrier signal node. This node represents the base signal without modulation applied.

FM = 1

Frequency Modulation node. (Frequency or Phase modulation, according to the latest documentation).

AM = 2

Amplitude Modulation node. (Amplitude or Sum modulation, according to the latest documentation).

class DwfAnalogOutMode

Enumeration type for analog out mode constants (voltage or current).

This type is used by the AnalogOut instrument to set or retrieve the mode of a channel.

In the C API, this type is represented as an int.

Voltage = 0

Voltage mode.

176 Chapter 6. pydwf enumeration types

pydwf, Release 1.1.19

Current = 1

Current mode.

class DwfAnalogOutIdle

Enumeration type for analog output idle state constants.

This type is used by the AnalogOut instrument to set the idle behavior of an output channel.

In the C API, this type is represented as an int.

Disable = 0

When idle, disable the output.

Offset = 1

When idle, drive the configured analog output offset.

Initial = 2

When idle, drive the initial value of the selected waveform shape.

class DwfDigitalInClockSource

Enumeration type for digital input clock source constants.

This type is used by the DigitalIn instrument to specify a clock source.

In the C API, this type is represented as an int.

Internal = 0

Use internal clock source.

External = 1

Use external clock source.

External2 = 2

Use alternate external clock source.

class DwfDigitalInSampleMode

Enumeration type for digital input sample mode constants.

This type is used by the DigitalIn instrument to specify a sample mode.

In the C API, this type is represented as an int.

Simple = 0

Only digital samples (no noise).

Noise = 1

Alternate samples (noise, sample, noise, sample, . . .) where noise is more than one transition between
two samples.

This setting is available when the sample rate is less than the maximum clock frequency (i.e., the divider
is greater than one). Digital noise means more than one transition between subsequent samples was
detected; this can indicate glitches or ringing.

class DwfDigitalOutOutput

Enumeration type for digital output mode constants.

This type is used by the DigitalOut instrument to specify the electronic behavior of a digital output channel.

In the C API, this type is represented as an int.

PushPull = 0

Push/Pull.

OpenDrain = 1

Open Drain.

6.2. pydwf enumeration classes reference 177

pydwf, Release 1.1.19

OpenSource = 2

Open Source.

ThreeState = 3

Tristate (for custom and random).

class DwfDigitalOutType

Enumeration type for digital output type constants.

This type is used by the DigitalOut instrument to specify the behavior mode of a digital output channel.

In the C API, this type is represented as an int.

Pulse = 0

Pulse output.

Custom = 1

Custom output.

Random = 2

Random output.

ROM = 3

ROM (lookup table) output.

State = 4

State machine output.

Play = 5

Continuous playback output.

class DwfDigitalOutIdle

Enumeration type for digital output idle mode constants.

This type is used primarily by the DigitalOut instrument to specify the idle behavior mode of a digital output
channel.

In addition to that, it is used by the ProtocolSPI functionality to specify the idle behavior of the pins it
controls.

In the C API, this type is represented as an int.

Init = 0

Same as initial value of selected output pattern.

Low = 1

Low signal level.

High = 2

High signal level.

Zet = 3

High impedance.

class DwfAnalogIO

Enumeration type for Analog I/O channel node type constants.

This type is used by the AnalogIO functionality to report the node type.

In the C API, this type is called ‘ANALOGIO’, and it is represented as an unsigned char.

Undocumented = 0

This value was returned in Analog Discovery Pro devices when using 3.16.3 of the DWF library. This
was a bug that was subsequently fixed.

178 Chapter 6. pydwf enumeration types

pydwf, Release 1.1.19

Enable = 1

The node represent an on/off switch.

Voltage = 2

The node represents a voltage.

Current = 3

The node represents a current.

Power = 4

The node represents a power.

Temperature = 5

The node represents a temperature.

Dmm = 6

The node represents a DMM (digital multimeter) value.

Range = 7

The node represents a range.

Measure = 8

(unknown)

Time = 9

The node represents a time.

Frequency = 10

The node represents a frequency.

Resistance = 11

The node represents a resistance.

Slew = 12

(unknown)

class DwfAnalogImpedance

Enumeration type for analog impedance measurement types.

This type is used by the AnalogImpedance measurement functionality to specify a measurement quantity
type.

In the C API, this type is represented as an int.

Impedance = 0

Measure impedance, in Ohms.

ImpedancePhase = 1

Measure impedance phase, in radians.

Resistance = 2

Measure resistance, in Ohms.

Reactance = 3

Measure reactance, in Ohms.

Admittance = 4

Measure admittance, in Siemens.

AdmittancePhase = 5

Measure admittance phase, in radians.

Conductance = 6

Measure conductance, in Siemens.

6.2. pydwf enumeration classes reference 179

pydwf, Release 1.1.19

Susceptance = 7

Measure susceptance, in Siemens.

SeriesCapacitance = 8

Measure series capacitance, in Farad.

ParallelCapacitance = 9

Measure parallel capacitance, in Farad.

SeriesInductance = 10

Measure series inductance, in Henry.

ParallelInductance = 11

Measure parallel inductance, in Henry.

Dissipation = 12

Measure dissipation, as a factor.

Quality = 13

Measure quality, as a factor.

Vrms = 14

Measure Vrms, in Volts.

Vreal = 15

Measure Vreal (real part of complex voltage), in Volts.

Vimag = 16

Measure Vimag (imaginary part of complex voltage), in Volts.

Irms = 17

Measure Irms, in Amps.

Ireal = 18

Measure Ireal (real part of complex current), in Amps.

Iimag = 19

Measure Iimag (imaginary part of complex current), in Amps.

class DwfDmm

Enumeration type for DMM (digital multimeter) measurements.

Note: This type is currently unused in the API. It is intended for functionality in the new ADP5250 device.

In the C API, this type is called ‘DwfDmm’, and it is represented as an int.

Resistance = 1

Resistance measurement.

Continuity = 2

Continuity measurement.

Diode = 3

Diode measurement.

DCVoltage = 4

DC voltage measurement.

ACVoltage = 5

AC voltage measurement.

180 Chapter 6. pydwf enumeration types

pydwf, Release 1.1.19

DCCurrent = 6

DC current measurement.

ACCurrent = 7

AC current measurement.

DCLowCurrent = 8

DC low current measurement.

ACLowCurrent = 9

AC low current measurement.

Temperature = 10

Temperature measurement.

6.2. pydwf enumeration classes reference 181

pydwf, Release 1.1.19

182 Chapter 6. pydwf enumeration types

CHAPTER

SEVEN

PYDWF UTILITIES

The pydwf.utilities package provides functionality built on top of the core functionality that is available in the pydwf
core package. It provides high-level functions that reflect best-practice implementations for common use-cases of
pydwf.

Currently, only a single utility function is provided by the pydwf.utilities module: pydwf.utilities.
openDwfDevice(), which is documented below.

7.1 Using the pydwf.utilities functionality

To use functionality from the pydwf.utilities package, import the symbols you need from it:

"""Demonstrate use of the openDwfDevice function."""

from pydwf import DwfLibrary
from pydwf.utilities import openDwfDevice

dwf = DwfLibrary()

with openDwfDevice(dwf) as device:
use_dwf_device(device)

The example above demonstrates the use of the pydwf.utilities.openDwfDevice() function. This function
encapsulates a number of core pydwf functions to allow easy selection of devices and device configurations. It is
documented below.

7.2 pydwf.utilities.openDwfDevice function reference

openDwfDevice(dwf: DwfLibrary, enum_filter: DwfEnumFilter | None = None, serial_number_filter: str |
None = None, device_id_filter: int | None = None, device_version_filter: int | None = None,
score_func: Callable[[Dict[DwfEnumConfigInfo, Any]], Any | None] | None = None)→
DwfDevice

Open a device identified by its serial number, optionally selecting a preferred configuration.

This is a three-step process:

1. The first step this function performs is to select a device for opening.

To do this, device enumeration is performed, resulting in a list of all reachable Digilent Waveforms
devices.

For this initial enumeration process the enum_filter parameter can be used to only list certain types of
devices (for example, only Analog Discovery 2 devices, or Digital Discovery devices). If omitted (the
default), all Digilent Waveforms devices will be listed.

183

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

pydwf, Release 1.1.19

Then, if the serial_number_filter parameter is given, the list will be filtered to exclude devices whose
serial numbers do not match.

If the list that remains has a single device, this device will be used. If not, a PyDwfError is raised.

2. The next step is to select a device configuration for the selected device.

For many use cases, the default configuration that provides a balanced tradeoff works fine. If no
score_func is provided, this default configuration will be used.

If a score_func parameter is provided, it should be a function (or lambda expression) that takes a single
parameter configuration_info, which is a dictionary with DwfEnumConfigInfo keys, and parameters
values for a specific device configuration.

The score_func should return None if the configuration is entirely unsuitable, or otherwise a score that
reflects the suitability of that particular configuration for the task at hand.

The openDwfDevice method will go through all available device configurations, construct a dictionary
of all parameters that describe the configuration, call the score_func with that dictionary as a parameter,
and examine the score value it returns. If multiple suitable device configurations are found (i.e., the
score_func does not return None), it will select the configuration with the highest score.

This may all sounds pretty complicated, but in practice this parameter is quite easy to define for most
common use-cases.

As an example, to select a configuration that maximizes the analog input buffer size, simply use this:

from pydwf import DwfEnumConfigInfo
from pydwf.utilities import openDwfDevice

def maximize_analog_in_buffer_size(config_parameters):
return config_parameters[DwfEnumConfigInfo.AnalogInBufferSize]

with openDwfDevice(dwf, score_func = maximize_analog_in_buffer_size) as␣
→˓device:

use_device_with_big_analog_in_buffer(device)

3. As a final step, the selected device is opened using the selected device configuration, and the newly
instantiated DwfDevice instance is returned.

Note: This method can take several seconds to complete. This long duration is caused by the use of the
DeviceEnum.enumerateDevices() method.

Parameters

• dwf (DwfLibrary) – The DwfLibrary used to open the device.

• enum_filter (Optional[DwfEnumFilter]) – An optional filter to limit the device
enumeration to certain device types. If None, enumerate all devices.

• serial_number_filter (str) – The serial number filter used to select a specific de-
vice. A device is considered to match if its 12-digit serial number ends with the serial
number filter string (case is ignored).

• device_id_filter (int) – The device ID filter to use.

• device_version_filter (int) – The device version filter to use.

• score_func (Optional[Callable[[Dict[DwfEnumConfigInfo, Any]],
Optional[Any]]]) – A function to score a configuration of the selected device. See
the description above for details.

Returns
The DwfDevice created as a result of this call.

184 Chapter 7. pydwf utilities

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pydwf, Release 1.1.19

Return type
DwfDevice

Raises
PyDwfError – could not select a unique candidate device, or no usable configuration de-
tected.

7.2. pydwf.utilities.openDwfDevice function reference 185

pydwf, Release 1.1.19

186 Chapter 7. pydwf utilities

CHAPTER

EIGHT

USING PYDWF AS A COMMAND LINE TOOL

After installation, the pydwf package itself can by executed as a command line tool:

$ python3 -m pydwf

This tool provides a number of sub-commands:

version
Show the version of the pydwf package and the DWF C library.

list
List all available Digilent Waveforms devices. Add the option ‘-c’ to show the supported configurations for
each device.

extract-examples
Extract a local directory with example Python scripts.

extract-html-docs
Extract a local directory with the HTML documentation.

extract-pdf-manual
Extract the documentation as a PDF file.

The command line tool will output help if the ‘-h’ command line option is provided. Below, the output of the
generic help is shown.

$ python3 -m pydwf -h
usage: python -m pydwf [-h] {version,list,ls,extract-examples,extract-html-docs} ...

Utilities for the pydwf package.

positional arguments:
{version,list,ls,extract-examples,extract-html-docs}
version show version of pydwf and the DWF library
list (ls) list Digilent Waveform devices
extract-examples extract pydwf example scripts to 'pydwf-examples' directory
extract-html-docs extract pydwf HTML documentation to 'pydwf-html-docs'␣

→˓directory
extract-pdf-manual extract pydwf PDF manual in current directory

optional arguments:
-h, --help show this help message and exit

To get help for a specific sub-command, specify the sub-command in question followed by the ‘-h’ command line
option.

187

pydwf, Release 1.1.19

188 Chapter 8. Using pydwf as a command line tool

CHAPTER

NINE

TRIGGERING EXPLAINED

Todo: This section is currently incomplete.

The intention is to discuss here the triggering bus architecture of the Digilent Waveforms devices, and to provide
a detailed explanation of the possibilities and limitations.

It would also be useful to provide some specs (latency, jitter) for common devices, which could be measured.

The Digilent Waveforms devices provide an internal triggering bus, allowing the AnalogIn, AnalogOut, DigitalIn,
and DigitalOut instruments to start their operation (signal capture or signal generation) at a precisely defined time
relative to some internal or external event.

The triggering infrastructure is highly flexible. The trigger detector functionality of the AnalogIn and DigitalIn
instruments can be used not only by those instruments themselves, but also by any of the other instruments, and it
is also possible to have instruments trigger on the start of one of the other instruments, externally supplied trigger
signals, or a trigger signal sent from the controlling PC.

9.1 Trigger sources

The following trigger sources are available:

• DwfTriggerSource.None_

• DwfTriggerSource.PC

• DwfTriggerSource.DetectorAnalogIn

• DwfTriggerSource.DetectorDigitalIn

• DwfTriggerSource.AnalogIn

• DwfTriggerSource.DigitalIn

• DwfTriggerSource.DigitalOut

• DwfTriggerSource.AnalogOut1

• DwfTriggerSource.AnalogOut2

• DwfTriggerSource.AnalogOut3

• DwfTriggerSource.AnalogOut4

• DwfTriggerSource.External1

• DwfTriggerSource.External2

• DwfTriggerSource.External3

• DwfTriggerSource.External4

• DwfTriggerSource.High

189

pydwf, Release 1.1.19

• DwfTriggerSource.Low

• DwfTriggerSource.Clock

9.2 Trigger timing and precision

(to be written)

190 Chapter 9. Triggering explained

CHAPTER

TEN

DEVICE PARAMETERS

Todo: This section is currently incomplete.

It currently only lists the device parameters. The intention of this section is to provide detailed information on what
the settings do for the different Digilent Waveforms devices that exist.

The following device parameters have been defined:

• DwfDeviceParameter.UsbPower

• DwfDeviceParameter.LedBrightness

• DwfDeviceParameter.OnClose

• DwfDeviceParameter.AudioOut

• DwfDeviceParameter.UsbLimit

• DwfDeviceParameter.AnalogOut

• DwfDeviceParameter.Frequency

191

pydwf, Release 1.1.19

192 Chapter 10. Device parameters

CHAPTER

ELEVEN

DIGILENT WAVEFORMS DEVICES AND THEIR CONFIGURATIONS

This section introduces device configurations and lists all Digilent Waveforms devices (past and present) and the
device configurations they support.

Todo: This section is currently incomplete.

We need to gather data on more devices.

11.1 About device configurations

For some Digilent Waveforms devices, multiple firmware configurations are available that make different tradeoffs
for certain hard-coded parameters. For example, one configuration may support a lot of buffering memory for
the AnalogIn instrument, while another configuration may support a lot of buffering memory for the DigitalOut
instrument. Several examples of different devices and their configurations are shown below.

Devices have a default configuration that represent a balanced tradeoff in functionality that works well for most
applications. However, for some user programs, it may be useful to select a different device configuration, that
is better suited to the task at hand. The device enumeration API provides a way to enumerate the relevant prop-
erties of all available device configurations. A user application can use this information to select the best device
configuration, and activate it while opening the device.

Handling device enumeration and device configurations involves quite a bit of bookkeeping. For many applications,
this complexity can be avoided by using the pydwf.utilities.openDwfDevice() convenience function. It
provides an easy-to-use alternative to dealing with device enumeration and device configurations directly.

11.2 An overview of Digilent Waveforms devices

We collected the information given below by executing the following command:

$ python3 -m pydwf list -c

11.2.1 Electronics Explorer (legacy)

An older device. This is the predecessor of the Analog Discovery Studio.

(no data)

193

https://digilent.com/reference/test-and-measurement/analog-discovery-studio/start

pydwf, Release 1.1.19

11.2.2 Analog Discovery (legacy)

An older device, coming in a black enclosure. This is the predecessor of the Analog Discovery 2.

(no data)

11.2.3 Analog Discovery 2

A low-cost multi-function device; the successor to the original Analog Discovery and the predecessor of the Analog
Discovery 3.

device : 3
version : 3
user_name : 'Discovery2'
device_name : 'Analog Discovery 2'

Configuration: 0 1 2 3 4 5 6 7
---------------------- ------ ------ ------ ------ ------ ------ ------ ------
AnalogInChannelCount 2 2 2 2 2 2 2 2
AnalogOutChannelCount 2 2 2 2 2 4 2 2
AnalogIOChannelCount 2 2 2 2 2 2 2 2
DigitalInChannelCount 16 16 0 16 16 16 16 16
DigitalOutChannelCount 16 0 0 16 16 8 16 16
DigitalIOChannelCount 16 16 16 16 16 16 16 16
AnalogInBufferSize 8192 16384 2048 512 8192 8192 512 8192
AnalogOutBufferSize 4096 1024 16384 256 4096 4096 256 1024
DigitalInBufferSize 4096 1024 0 16384 4096 2048 16384 16384
DigitalOutBufferSize 1024 0 0 16384 1024 256 16384 256

Note that we only show the parameters with integer values here. This makes it look as if device configurations 0
and 4 are identical, as well as configurations 3 and 6.

However, if we also consider the OtherInfoText information, we’d see that this is single period (‘.’) character
in configurations 0 and 3, and ‘1V8_Digital_Input’ in configurations 4 and 6. So those configurations that look
identical are indeed distinct.

11.2.4 Analog Discovery 3

A current, low-cost multi-function device; the successor to the Analog Discovery 2.

device : 10
version : 3
user_name : 'Discovery3'
device_name : 'Analog Discovery 3'

Configuration: 0 1 2 3 4 5
---------------------- -------- -------- -------- -------- -------- --------
TooltipText (length) (413) (404) (404) (412) (412) (411)
OtherInfoText _ _ _ _ _ _
AnalogInChannelCount 2 2 2 2 2 2
AnalogOutChannelCount 4 4 4 4 4 4
AnalogIOChannelCount 2 2 2 2 2 2
DigitalInChannelCount 16 16 16 16 16 16
DigitalOutChannelCount 16 16 16 16 16 16
DigitalIOChannelCount 16 16 16 16 16 16
AnalogInBufferSize 16384 32768 8192 16384 4096 8192
AnalogOutBufferSize 16384 4096 32768 4096 4096 16384

(continues on next page)

194 Chapter 11. Digilent Waveforms devices and their configurations

https://digilent.com/reference/test-and-measurement/analog-discovery-2/start
https://digilent.com/reference/test-and-measurement/analog-discovery/start
https://digilent.com/reference/test-and-measurement/analog-discovery-3/start
https://digilent.com/reference/test-and-measurement/analog-discovery-3/start
https://digilent.com/reference/test-and-measurement/analog-discovery-2/start

pydwf, Release 1.1.19

(continued from previous page)

DigitalInBufferSize 16384 4096 2048 32768 32768 2048
DigitalOutBufferSize 2048 2048 2048 2048 32768 2048

11.2.5 Digital Discovery

A current, low-cost device, similar to the Analog Discovery 2, but omitting analog inputs and outputs. On the plus
side, it provides high-speed differential digital inputs, and more memory for pattern generation and capture.

device : 4
version : 2
username : 'DDiscovery'
devicename : 'Digital Discovery'

Configuration: 0
---------------------- --------
AnalogInChannelCount 0
AnalogOutChannelCount 0
AnalogIOChannelCount 1
DigitalInChannelCount 24
DigitalOutChannelCount 16
DigitalIOChannelCount 16
AnalogInBufferSize 0
AnalogOutBufferSize 0
DigitalInBufferSize 67108864
DigitalOutBufferSize 32768

11.2.6 Analog Discovery Studio

This is the spiritual successor to the earlier Electronics Explorer device.

(no data)

11.2.7 DPS3340 Discovery USB power supply

(no data)

11.2.8 Analog Discovery Pro 3x50

This device is feature-wise comparable to the Analog Discovery 2, sold since 2020. Hardware-wise, it is more
high-end; it provides BNC connectors for its analog inputs and outputs.

This class of devices includes two models: the Analog Discovery Pro 3250 and the Analog Discovery Pro 3450.

The data below is for an Analog Discovery Pro 3450:

device : 6
version : 4
username : 'ADP3450'
devicename : 'Analog Discovery Pro 3450'

Configuration: 0 1
---------------------- -------- --------
AnalogInChannelCount 4 4
AnalogOutChannelCount 2 2

(continues on next page)

11.2. An overview of Digilent Waveforms devices 195

https://digilent.com/reference/test-and-measurement/analog-discovery-2/start
https://digilent.com/reference/test-and-measurement/electronics-explorer/start
https://digilent.com/reference/test-and-measurement/analog-discovery-2/start

pydwf, Release 1.1.19

(continued from previous page)

AnalogIOChannelCount 1 1
DigitalInChannelCount 16 16
DigitalOutChannelCount 16 16
DigitalIOChannelCount 16 16
AnalogInBufferSize 32768 65536
AnalogOutBufferSize 32768 4096
DigitalInBufferSize 32768 8192
DigitalOutBufferSize 16384 1024

11.2.9 Analog Discovery Pro 5250

A clone of the National Instruments VB-8012 device. Works only in Windows.

(no data)

196 Chapter 11. Digilent Waveforms devices and their configurations

CHAPTER

TWELVE

ABOUT THE DWF C LIBRARY

Digilent provides the Digilent Waveforms library to control their line of line of electronic test and measurement
devices. The library is available as a DLL on Microsoft Windows, a shared object (“so”) library on Linux, and a
framework on Apple’s macOS. The provided library is accompanied by a C header file; together with the shared
library file itself, this allows access to the functionality provided from the C and C++ programming languages.

12.1 Accessing the DWF library from Python

Most popular programming languages provide a mechanism to access functions in shared libraries. In Python,
such a mechanism is provided by the ctypes module that is part of the standard Python library.

The pydwf package is a binding to the functionality provided by the DWF library, using the ctypes module. It
makes all types and functions provided by the DWF library available for use in Python programs, wrapping them
in a small set of classes that makes them easy to use.

12.2 Overview of the C API

The DWF library comes with a C header file that (for version 3.20.1) defines the 27 enumeration types and 478
function calls that together make up the DWF API. Of the 478 function calls provided, 33 are labeled obsolete.
Their functionality is usually superseded by newer, more general functions.

The API functions are organized in 16 sub-categories, each providing access to a subset of the DWF functionality
— for example, a specific type of instrument, or functions to send and receive messages using a certain protocol.

The function counts for each of the sub-categories of functionality are listed below, to give some idea of the com-
plexity of the different areas of the API.

197

https://digilent.com/
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/ctypes.html#module-ctypes

pydwf, Release 1.1.19

Table 1: DWF C API function counts (by category), version 3.20.1

C API category pydwf equivalent active obsolete total
(miscellaneous) DwfLibrary 5 0 5
FDwfEnum DwfLibrary.deviceEnum 11 4 15
FDwfDevice DwfLibrary.deviceControl, DwfDevice 16 0 16
FDwfSpectrum DwfLibrary.spectrum 3 0 3
FDwfAnalogIn DwfDevice.analogIn 100 1 101
FDwfAnalogOut DwfDevice.analogOut 58 25 83
FDwfAnalogIO DwfDevice.analogIO 17 0 17
FDwfAnalogImpedance DwfDevice.analogImpedance 23 0 23
FDwfDigitalIn DwfDevice.digitalIn 60 2 62
FDwfDigitalOut DwfDevice.digitalOut 52 1 53
FDwfDigitalIO DwfDevice.digitalIO 25 0 25
FDwfDigitalUart DwfDevice.protocol.uart 10 0 10
FDwfDigitalSpi DwfDevice.protocol.spi 32 0 32
FDwfDigitalI2c DwfDevice.protocol.i2c 14 0 14
FDwfDigitalCan DwfDevice.protocol.can 7 0 7
FDwfDigitalSwd DwfDevice.protocol.swd 12 0 12
TOTAL 445 33 478

From this table, it is clear that the most complex parts of the API are the AnalogIn (“oscilloscope”) and AnalogOut
(“waveform generator”) instruments, followed by the DigitalIn (“logic analyzer”) and DigitalOut (“pattern gener-
ator”) instruments. About 60% of all the functions provided by the DWF library are directly related to control of
these four powerful instruments.

12.3 Error handling in the C API

Each function in the C API returns an integer, indicating its success or error status. A value of 0 indicates an error,
while a value of 1 indicates success.

Note:
This is different from the convention used in most C libraries, where a 0 return value indicates success.

In earlier versions of libdwf the return value of operations was specified to be of type bool, with true (1)
indicating success and false (0) indicating failure. The return type was changed to int at some point, but the
values for success and failure remained the same for reasons of backward compatibility.

In case a function returns 0, indicating some kind of failure, the C API provides two functions to inquire the reason
of the failure. The FDwfGetLastError function returns a value of C enumeration type DWFERC (represented in
Python by the enumeration type DwfErrorCode), indicating the cause of the last error, while function FDwfGet-
LastErrorMsg returns a string describing the error.

In pydwf, the low-level error reporting provided by the C API is handled by checking the return value of any C API
call, and raising a DwfLibraryError whenever a failure is detected.

198 Chapter 12. About the DWF C Library

CHAPTER

THIRTEEN

EXAMPLE SCRIPTS

The Python examples can be installed locally after installing the pydwf package by executing the following com-
mand:

python -m pydwf extract-examples

This will create a local directory called pydwf-examples containing the Python examples that demonstrate many of
the capabilities of the Digilent Waveforms devices and pydwf.

Todo: This section is currently incomplete.

Some examples that are currently missing:

• We need more examples for the DigitalIn and DigitalOut instruments.

• The four main instruments need examples for all their modes.

• We need examples using inter-instrument triggering.

• We need examples for the AnalogImpedance functionality.

• We need examples for the Spectrum functionality.

• We need examples for the deviceEnum and DeviceControl APIs.

The following examples are currently provided:

DeviceControl functionality example

DigitalDiscoveryLedBrightnessParameter.py
Modulate the brightness of the Digital Discovery power-on LED.

This example only works with the Digital Discovery device.

DeviceEnumeration functionality example

No example available (yet).

For now, it is recommended to have a look at the list_devices() function in the __main.py__ top-level module.

199

https://github.com/sidneycadot/pydwf/blob/master/source/pydwf-examples/DigitalDiscoveryLedBrightnessParameter.py
https://github.com/sidneycadot/pydwf/blob/master/source/pydwf/__main__.py

pydwf, Release 1.1.19

AnalogIn instrument examples

AnalogInSimple.py
This example demonstrates the easiest way to obtain samples from the analog input channels.

The method used by the example is useful if triggering or precise timing is not important.

AnalogInShiftScanShiftScreenDemo.py
This example demonstrates recording using the AnalogIn instrument, in ScanScreen or ScanShift modes.

The acquisition mode (ScanScreen or ScanShift) can be selected using a command line parameter.

AnalogInRecordMode.py
This example demonstrates acquisition using the AnalogIn instrument.

The script emits sinusoid signals on the first two channels of the AnalogOut instrument, and continuously
samples the first two channels of the AnalogIn instrument.

This example assumes that the analog output channels are connected to the analog input channels.

Availability of the matplotlib package is assumed for plotting results.

AnalogOut instrument examples

AnalogOutShowChannelAndNodeInfo.py
This program starts by selecting the device configuration that has the largest count of analog output channels.

It then enumerates all these output channels and shows their capabilities, including all sub-nodes of each
channel, and their capabilities.

This example is mostly interesting to show the capabilities of the rarely used third and fourth analog output
channels of the Analog Discovery 2, which are only available in one device configuration. These two extra
channels are essentially the V+ and V- power supply outputs.

AnalogOutSimple.py
Show simple control of the analog output channels of the AnalogOut instrument.

This example programs an AnalogOut output channel for a square output waveform, but doesn’t actually
start it. By configuring the channel to drive the Initial waveform value on its output while idle, the output
voltage can be controlled directly by manipulating the channel’s amplitude setting.

This method is useful if the output needs to change only occasionally, and if triggering or precise timing is
not important.

This technique is much faster than the alternative approach of changing the channel’s offset setting, which
takes a long time to stabilize after a change due to the presence of an analog low-pass filter. The demonstrated
technique can change the analog output value at a rate of several hundred times per second.

AnalogOutPlayFunction.py
Play one of the built-in analog output waveforms using the AnalogOut instrument.

The user can select the waveform, frequency, amplitude, offset, phase, and symmetry parameters using com-
mand line options.

AnalogOutShowFunctionSymmetry.py
Show the way the symmetry setting changes the behavior of the built-in analog output waveforms of the
AnalogOut instrument.

This example assumes that the first analog output channel is connected to the first analog input channel.

Availability of the matplotlib package is assumed for plotting results.

AnalogOutAmplitudeModulationDemo.py
Show the way Amplitude Modulation (AM) changes a carrier sine wave using AnalogOut instrument.

This example assumes that the first analog output channel is connected to the first analog input channel.

Availability of the matplotlib package is assumed for plotting results.

200 Chapter 13. Example scripts

https://github.com/sidneycadot/pydwf/blob/master/source/pydwf-examples/AnalogInSimple.py
https://github.com/sidneycadot/pydwf/blob/master/source/pydwf-examples/AnalogInShiftScanShiftScreenDemo.py
https://github.com/sidneycadot/pydwf/blob/master/source/pydwf-examples/AnalogInRecordMode.py
https://matplotlib.org/
https://github.com/sidneycadot/pydwf/blob/master/source/pydwf-examples/AnalogOutShowChannelAndNodeInfo.py
https://github.com/sidneycadot/pydwf/blob/master/source/pydwf-examples/AnalogOutSimple.py
https://github.com/sidneycadot/pydwf/blob/master/source/pydwf-examples/AnalogOutPlayFunction.py
https://github.com/sidneycadot/pydwf/blob/master/source/pydwf-examples/AnalogOutShowFunctionSymmetry.py
https://matplotlib.org/
https://github.com/sidneycadot/pydwf/blob/master/source/pydwf-examples/AnalogOutAmplitudeModulationDemo.py
https://matplotlib.org/

pydwf, Release 1.1.19

AnalogOutPlayCustomWaveform.py
Show a custom waveform on CH1 of the AnalogOut instrument. The custom waveform can be given as a file
containing human-readable numbers. If no filename is specified, a default custom waveform is generated.

Hook up the first analog output channel of your device to an oscilloscope to see the custom waveform.

AnalogOutContinuousPlay.py
Show either a circle or a polygon on CH1 (X) and CH2 (Y) of the AnalogOut instrument.

To properly appreciate this example, hook up these two channels to a second oscilloscope that is configured
for X-vs-Y display mode.

AnalogOutSpinningGlobe.py
Show a spinning globe on CH1 (X) and CH2 (Y) of the AnalogOut instrument.

To properly appreciate this example, hook up these two channels to a second oscilloscope that is configured
for X-vs-Y display mode.

AnalogIO functionality example

AnalogIO.py
This example enumerates all AnalogIO channels and their nodes. After that, it continuously reports the
quantities associated with the “USB Monitor” channel.

Analog Impedance examples

Not yet available.

DigitalIn instrument examples

Not yet available.

DigitalOut instrument examples

DigitalOutShowStatusDuringPulsePlayback.py
Demonstrate the behavior of the DigitalOut instrument status during Pulse playback.

DigitalIO functionality example

DigitalIO.py
Demonstrate static monitoring and control of the digital input and output pins.

Protocol examples

ProtocolUART.py
An example showing loopback transmission and reception using the UART protocol.

ProtocolCAN.py
An example showing loopback transmission and reception of messages using the CAN bus protocol.

ProtocolSPI.py
This example demonstrates continuous readout of an ADXL345 triple-axis accelerometer using the SPI pro-
tocol.

The program expects to find the accelerometer IC attached to the proper pins. See the source code for a
description on how to hook up an ADXL345 to make this work.

201

https://github.com/sidneycadot/pydwf/blob/master/source/pydwf-examples/AnalogOutPlayCustomWaveform.py
https://github.com/sidneycadot/pydwf/blob/master/source/pydwf-examples/AnalogOutContinuousPlay.py
https://github.com/sidneycadot/pydwf/blob/master/source/pydwf-examples/AnalogOutSpinningGlobe.py
https://github.com/sidneycadot/pydwf/blob/master/source/pydwf-examples/AnalogIO.py
https://github.com/sidneycadot/pydwf/blob/master/source/pydwf-examples/DigitalOutShowStatusDuringPulsePlayback.py
https://github.com/sidneycadot/pydwf/blob/master/source/pydwf-examples/DigitalIO.py
https://github.com/sidneycadot/pydwf/blob/master/source/pydwf-examples/ProtocolUART.py
https://github.com/sidneycadot/pydwf/blob/master/source/pydwf-examples/ProtocolCAN.py
https://github.com/sidneycadot/pydwf/blob/master/source/pydwf-examples/ProtocolSPI.py

pydwf, Release 1.1.19

ProtocolI2C.py
This example demonstrates continuous readout of an ADXL345 triple-axis accelerometer using the I2C pro-
tocol.

The program expects to find the accelerometer IC attached to the proper pins. See the source code for a
description on how to hook up an ADXL345 to make this work.

202 Chapter 13. Example scripts

https://github.com/sidneycadot/pydwf/blob/master/source/pydwf-examples/ProtocolI2C.py

INDEX

Symbols
__init__() (DwfLibrary method), 12

A
AC (DwfAnalogCoupling attribute), 174
ACCurrent (DwfDmm attribute), 181
ACLowCurrent (DwfDmm attribute), 181
acquisitionModeGet() (AnalogIn method), 46
acquisitionModeGet() (DigitalIn method), 109
acquisitionModeInfo() (AnalogIn method), 45
acquisitionModeInfo() (DigitalIn method), 109
acquisitionModeSet() (AnalogIn method), 45
acquisitionModeSet() (DigitalIn method), 109
ACVoltage (DwfDmm attribute), 180
Admittance (DwfAnalogImpedance attribute), 179
AdmittancePhase (DwfAnalogImpedance attribute),

179
ADP3X50 (DwfDeviceID attribute), 167
ADP5250 (DwfDeviceID attribute), 167
All (DwfEnumFilter attribute), 165
AlreadyOpened (DwfErrorCode attribute), 165
AM (DwfAnalogOutNode attribute), 176
amplitudeGet() (AnalogImpedance method), 97
amplitudeGet() (AnalogOut method), 83
amplitudeInfo() (AnalogOut method), 83
amplitudeSet() (AnalogImpedance method), 97
amplitudeSet() (AnalogOut method), 83
AnalogImpedance (class in py-

dwf.core.api.analog_impedance), 95
analogImpedance (DwfDevice attribute), 28
AnalogIn (class in pydwf.core.api.analog_in), 38
analogIn (DwfDevice attribute), 28
AnalogIn (DwfTriggerSource attribute), 171
analogInBits() (DeviceEnumeration method), 20
AnalogInBufferSize (DwfEnumConfigInfo at-

tribute), 167
analogInBufferSize() (DeviceEnumeration

method), 19
AnalogInChannelCount (DwfEnumConfigInfo

attribute), 166
analogInChannels() (DeviceEnumeration method),

19
analogInFrequency() (DeviceEnumeration

method), 20
AnalogIO (class in pydwf.core.api.analog_io), 90
analogIO (DwfDevice attribute), 28

AnalogIOChannelCount (DwfEnumConfigInfo
attribute), 166

AnalogOut (class in pydwf.core.api.analog_out), 66
analogOut (DwfDevice attribute), 28
AnalogOut (DwfDeviceParameter attribute), 169
AnalogOut1 (DwfTriggerSource attribute), 171
AnalogOut2 (DwfTriggerSource attribute), 171
AnalogOut3 (DwfTriggerSource attribute), 172
AnalogOut4 (DwfTriggerSource attribute), 172
AnalogOutBufferSize (DwfEnumConfigInfo at-

tribute), 167
AnalogOutChannelCount (DwfEnumConfigInfo at-

tribute), 166
ApiLockTimeout (DwfErrorCode attribute), 165
Armed (DwfState attribute), 171
Audio (DwfEnumFilter attribute), 166
AudioOut (DwfDeviceParameter attribute), 169
autoConfigureGet() (DwfDevice method), 30
autoConfigureSet() (DwfDevice method), 30
Average (DwfAnalogInFilter attribute), 173
AverageFit (DwfAnalogInFilter attribute), 173
AXI (DwfEnumFilter attribute), 166

B
bitsInfo() (AnalogIn method), 42
bitsInfo() (DigitalIn method), 109
bitsSet() (ProtocolUART method), 138
BlackmanHarris (DwfWindow attribute), 170
bufferSizeGet() (AnalogIn method), 44
bufferSizeGet() (DigitalIn method), 110
bufferSizeInfo() (AnalogIn method), 44
bufferSizeInfo() (DigitalIn method), 110
bufferSizeSet() (AnalogIn method), 44
bufferSizeSet() (DigitalIn method), 110

C
can (DwfDevice.protocol attribute), 29
Carrier (DwfAnalogOutNode attribute), 176
channelAttenuationGet() (AnalogIn method), 49
channelAttenuationSet() (AnalogIn method), 49
channelBandwidthGet() (AnalogIn method), 50
channelBandwidthSet() (AnalogIn method), 50
channelCount() (AnalogIn method), 46
channelCount() (AnalogIO method), 92
channelCounts() (AnalogIn method), 46
channelCouplingGet() (AnalogIn method), 51

203

pydwf, Release 1.1.19

channelCouplingInfo() (AnalogIn method), 51
channelCouplingSet() (AnalogIn method), 51
channelEnableGet() (AnalogIn method), 46
channelEnableSet() (AnalogIn method), 46
channelFilterGet() (AnalogIn method), 47
channelFilterInfo() (AnalogIn method), 47
channelFilterSet() (AnalogIn method), 47
channelImpedanceGet() (AnalogIn method), 51
channelImpedanceSet() (AnalogIn method), 50
channelInfo() (AnalogIO method), 92
channelName() (AnalogIO method), 92
channelNodeGet() (AnalogIO method), 93
channelNodeInfo() (AnalogIO method), 92
channelNodeName() (AnalogIO method), 92
channelNodeSet() (AnalogIO method), 93
channelNodeSetInfo() (AnalogIO method), 93
channelNodeStatus() (AnalogIO method), 94
channelNodeStatusInfo() (AnalogIO method), 94
channelOffsetGet() (AnalogIn method), 49
channelOffsetInfo() (AnalogIn method), 48
channelOffsetSet() (AnalogIn method), 49
channelRangeGet() (AnalogIn method), 48
channelRangeInfo() (AnalogIn method), 47
channelRangeSet() (AnalogIn method), 47
channelRangeSteps() (AnalogIn method), 48
clear() (ProtocolI2C method), 152
clear() (ProtocolSWD method), 159
Clock (DwfTriggerSource attribute), 172
ClockMode (DwfDeviceParameter attribute), 169
clockSet() (ProtocolSPI method), 141
clockSet() (ProtocolSWD method), 158
clockSourceGet() (DigitalIn method), 108
clockSourceInfo() (DigitalIn method), 107
clockSourceSet() (DigitalIn method), 108
close() (DwfDevice method), 30
closeAll() (DeviceControl method), 23
cmdRead() (ProtocolSPI method), 148
cmdRead16() (ProtocolSPI method), 149
cmdRead32() (ProtocolSPI method), 149
cmdWrite() (ProtocolSPI method), 150
cmdWrite16() (ProtocolSPI method), 151
cmdWrite32() (ProtocolSPI method), 151
cmdWriteOne() (ProtocolSPI method), 150
cmdWriteRead() (ProtocolSPI method), 146
cmdWriteRead16() (ProtocolSPI method), 147
cmdWriteRead32() (ProtocolSPI method), 147
cmReadOne() (ProtocolSPI method), 148
code (DwfLibraryError attribute), 162
compGet() (AnalogImpedance method), 98
compReset() (AnalogImpedance method), 98
compSet() (AnalogImpedance method), 98
Conductance (DwfAnalogImpedance attribute), 179
Config (DwfState attribute), 171
configInfo() (DeviceEnumeration method), 18
configure() (AnalogImpedance method), 95
configure() (AnalogIn method), 38
configure() (AnalogIO method), 90
configure() (AnalogOut method), 67

configure() (DigitalIn method), 104
configure() (DigitalIO method), 132
configure() (DigitalOut method), 120
Continuity (DwfDmm attribute), 180
Cosine (DwfWindow attribute), 170
count() (AnalogOut method), 67
count() (DigitalOut method), 121
counterGet() (AnalogIn method), 59
counterGet() (DigitalIn method), 116
counterGet() (DigitalOut method), 128
counterInfo() (AnalogIn method), 59
counterInfo() (DigitalIn method), 116
counterInfo() (DigitalOut method), 128
counterInitGet() (DigitalOut method), 128
counterInitSet() (DigitalOut method), 128
counterSet() (AnalogIn method), 59
counterSet() (DigitalIn method), 116
counterSet() (DigitalOut method), 128
counterStatus() (AnalogIn method), 59
counterStatus() (DigitalIn method), 116
Current (DwfAnalogIO attribute), 179
Current (DwfAnalogOutMode attribute), 176
Custom (DwfAnalogOutFunction attribute), 176
Custom (DwfDigitalOutType attribute), 178
customAMFMEnableGet() (AnalogOut method), 74
customAMFMEnableSet() (AnalogOut method), 73
CustomPattern (DwfAnalogOutFunction attribute),

175

D
dataInfo() (AnalogOut method), 86
dataInfo() (DigitalOut method), 129
dataSet() (AnalogOut method), 87
dataSet() (DigitalOut method), 130
dataSet() (ProtocolSPI method), 141
DC (DwfAnalogCoupling attribute), 174
DC (DwfAnalogOutFunction attribute), 175
DCCurrent (DwfDmm attribute), 180
DCLowCurrent (DwfDmm attribute), 181
DCVoltage (DwfDmm attribute), 180
DDiscovery (DwfDeviceID attribute), 167
Decimate (DwfAnalogInFilter attribute), 173
delaySet() (ProtocolSPI method), 142
Demo (DwfEnumFilter attribute), 166
DetectorAnalogIn (DwfTriggerSource attribute), 171
DetectorDigitalIn (DwfTriggerSource attribute),

171
device (AnalogImpedance property), 99
device (AnalogIn property), 60
device (AnalogIO property), 94
device (AnalogOut property), 88
device (DigitalIn property), 116
device (DigitalIO property), 137
device (DigitalOut property), 131
device (ProtocolCAN property), 157
device (ProtocolI2C property), 155
device (ProtocolSPI property), 151
device (ProtocolSWD property), 160

204 Index

pydwf, Release 1.1.19

device (ProtocolUART property), 140
DeviceControl (class in py-

dwf.core.api.device_control), 21
deviceControl (DwfLibrary attribute), 12
deviceEnum (DwfLibrary attribute), 12
DeviceEnumeration (class in py-

dwf.core.api.device_enumeration), 15
deviceIsOpened() (DeviceEnumeration method), 17
deviceName() (DeviceEnumeration method), 17
deviceType() (DeviceEnumeration method), 17
DEVID (DwfEnumFilter attribute), 165
digitalCan (DwfDevice property), 30
digitalI2c (DwfDevice property), 30
DigitalIn (class in pydwf.core.api.digital_in), 104
digitalIn (DwfDevice attribute), 28
DigitalIn (DwfTriggerSource attribute), 171
DigitalInBufferSize (DwfEnumConfigInfo at-

tribute), 167
DigitalInChannelCount (DwfEnumConfigInfo at-

tribute), 166
DigitalIO (class in pydwf.core.api.digital_io), 132
digitalIO (DwfDevice attribute), 29
DigitalIOChannelCount (DwfEnumConfigInfo at-

tribute), 167
DigitalOut (class in pydwf.core.api.digital_out), 120
digitalOut (DwfDevice attribute), 28
DigitalOut (DwfTriggerSource attribute), 171
DigitalOutBufferSize (DwfEnumConfigInfo

attribute), 167
DigitalOutChannelCount (DwfEnumConfigInfo at-

tribute), 166
digitalSpi (DwfDevice property), 29
digitalSwd (DwfDevice property), 30
digitalUart (DwfDevice property), 29
Diode (DwfDmm attribute), 180
Disable (DwfAnalogOutIdle attribute), 177
Discovery (DwfDeviceID attribute), 167
Discovery2 (DwfDeviceID attribute), 167
DiscoveryA (DwfDeviceVersion attribute), 168
DiscoveryB (DwfDeviceVersion attribute), 168
DiscoveryC (DwfDeviceVersion attribute), 168
Dissipation (DwfAnalogImpedance attribute), 180
dividerGet() (DigitalIn method), 108
dividerGet() (DigitalOut method), 127
dividerInfo() (DigitalIn method), 108
dividerInfo() (DigitalOut method), 127
dividerInitGet() (DigitalOut method), 127
dividerInitSet() (DigitalOut method), 127
dividerSet() (DigitalIn method), 108
dividerSet() (DigitalOut method), 127
Dmm (DwfAnalogIO attribute), 179
Done (DwfState attribute), 171
DPS3340 (DwfDeviceID attribute), 167
driveGet() (DigitalIO method), 134
driveInfo() (DigitalIO method), 134
driveSet() (DigitalIO method), 134
dwf (DeviceControl property), 23
dwf (DeviceEnumeration property), 20

dwf (DwfDevice property), 29
dwf (Spectrum property), 25
DwfAcquisitionMode (class in py-

dwf.core.auxiliary.enum_types), 172
DwfAnalogCoupling (class in py-

dwf.core.auxiliary.enum_types), 174
DwfAnalogImpedance (class in py-

dwf.core.auxiliary.enum_types), 179
DwfAnalogInFilter (class in py-

dwf.core.auxiliary.enum_types), 173
DwfAnalogInTriggerLengthCondition (class in

pydwf.core.auxiliary.enum_types), 174
DwfAnalogInTriggerType (class in py-

dwf.core.auxiliary.enum_types), 174
DwfAnalogIO (class in py-

dwf.core.auxiliary.enum_types), 178
DwfAnalogOutFunction (class in py-

dwf.core.auxiliary.enum_types), 174
DwfAnalogOutIdle (class in py-

dwf.core.auxiliary.enum_types), 177
DwfAnalogOutMode (class in py-

dwf.core.auxiliary.enum_types), 176
DwfAnalogOutNode (class in py-

dwf.core.auxiliary.enum_types), 176
DwfDevice (class in pydwf.core.dwf_device), 28
DwfDeviceID (class in py-

dwf.core.auxiliary.enum_types), 167
DwfDeviceParameter (class in py-

dwf.core.auxiliary.enum_types), 168
DwfDeviceVersion (class in py-

dwf.core.auxiliary.enum_types), 167
DwfDigitalInClockSource (class in py-

dwf.core.auxiliary.enum_types), 177
DwfDigitalInSampleMode (class in py-

dwf.core.auxiliary.enum_types), 177
DwfDigitalOutIdle (class in py-

dwf.core.auxiliary.enum_types), 178
DwfDigitalOutOutput (class in py-

dwf.core.auxiliary.enum_types), 177
DwfDigitalOutType (class in py-

dwf.core.auxiliary.enum_types), 178
DwfDmm (class in pydwf.core.auxiliary.enum_types),

180
DwfEnumConfigInfo (class in py-

dwf.core.auxiliary.enum_types), 166
DwfEnumFilter (class in py-

dwf.core.auxiliary.enum_types), 165
DwfErrorCode (class in py-

dwf.core.auxiliary.enum_types), 165
DwfLibrary (class in pydwf.core.dwf_library), 11
DwfLibraryError (class in py-

dwf.core.auxiliary.exceptions), 162
DwfState (class in pydwf.core.auxiliary.enum_types),

170
DwfTriggerSlope (class in py-

dwf.core.auxiliary.enum_types), 172
DwfTriggerSource (class in py-

dwf.core.auxiliary.enum_types), 171

Index 205

pydwf, Release 1.1.19

DwfWindow (class in py-
dwf.core.auxiliary.enum_types), 170

E
Eclypse (DwfDeviceID attribute), 167
Edge (DwfAnalogInTriggerType attribute), 174
EExplorer (DwfDeviceID attribute), 167
EExplorerC (DwfDeviceVersion attribute), 167
EExplorerE (DwfDeviceVersion attribute), 167
EExplorerF (DwfDeviceVersion attribute), 168
Either (DwfTriggerSlope attribute), 172
Enable (DwfAnalogIO attribute), 178
enableGet() (AnalogIO method), 91
enableGet() (AnalogOut method), 80
enableGet() (DigitalOut method), 125
enableInfo() (AnalogIO method), 91
enableSet() (AnalogIO method), 91
enableSet() (AnalogOut method), 80
enableSet() (DigitalOut method), 124
enableSet() (DwfDevice method), 31
enableStatus() (AnalogIO method), 91
enumerateConfigurations() (DeviceEnumeration

method), 18
enumerateDevices() (DeviceEnumeration method),

15
enumerateInfo() (DeviceEnumeration method), 16
enumerateStart() (DeviceEnumeration method), 15
enumerateStop() (DeviceEnumeration method), 16
External (DwfDigitalInClockSource attribute), 177
External1 (DwfTriggerSource attribute), 172
External2 (DwfDigitalInClockSource attribute), 177
External2 (DwfTriggerSource attribute), 172
External3 (DwfTriggerSource attribute), 172
External4 (DwfTriggerSource attribute), 172
ExtFreq (DwfDeviceParameter attribute), 169

F
Fall (DwfTriggerSlope attribute), 172
fft() (Spectrum method), 24
FlatTop (DwfWindow attribute), 170
FM (DwfAnalogOutNode attribute), 176
FreqPhase (DwfDeviceParameter attribute), 170
Frequency (DwfAnalogIO attribute), 179
Frequency (DwfDeviceParameter attribute), 169
frequencyGet() (AnalogImpedance method), 96
frequencyGet() (AnalogIn method), 43
frequencyGet() (AnalogOut method), 82
frequencyInfo() (AnalogIn method), 43
frequencyInfo() (AnalogOut method), 82
frequencySet() (AnalogImpedance method), 96
frequencySet() (AnalogIn method), 43
frequencySet() (AnalogOut method), 82
frequencySet() (ProtocolSPI method), 141
functionGet() (AnalogOut method), 81
functionInfo() (AnalogOut method), 81
functionSet() (AnalogOut method), 81

G
getLastError() (DwfLibrary method), 12
getLastErrorMsg() (DwfLibrary method), 13
getVersion() (DwfLibrary method), 13

H
Hamming (DwfWindow attribute), 170
Hann (DwfWindow attribute), 170
High (DwfDigitalOutIdle attribute), 178
High (DwfTriggerSource attribute), 172

I
i2c (DwfDevice.protocol attribute), 29
idleGet() (AnalogOut method), 72
idleGet() (DigitalOut method), 126
idleInfo() (AnalogOut method), 72
idleInfo() (DigitalOut method), 126
idleSet() (AnalogOut method), 72
idleSet() (DigitalOut method), 126
idleSet() (ProtocolSPI method), 141
Iimag (DwfAnalogImpedance attribute), 180
Impedance (DwfAnalogImpedance attribute), 179
ImpedancePhase (DwfAnalogImpedance attribute),

179
Init (DwfDigitalOutIdle attribute), 178
Initial (DwfAnalogOutIdle attribute), 177
inputInfo() (DigitalIO method), 134
inputInfo64() (DigitalIO method), 136
inputOrderSet() (DigitalIn method), 109
inputStatus() (DigitalIO method), 135
inputStatus64() (DigitalIO method), 137
Internal (DwfDigitalInClockSource attribute), 177
internalClockInfo() (DigitalIn method), 107
internalClockInfo() (DigitalOut method), 126
InvalidParameter0 (DwfErrorCode attribute), 165
InvalidParameter1 (DwfErrorCode attribute), 165
InvalidParameter2 (DwfErrorCode attribute), 165
InvalidParameter3 (DwfErrorCode attribute), 165
InvalidParameter4 (DwfErrorCode attribute), 165
ioIdleSet() (ProtocolSWD method), 159
ioSet() (ProtocolSWD method), 158
Ireal (DwfAnalogImpedance attribute), 180
Irms (DwfAnalogImpedance attribute), 180

K
Kaiser (DwfWindow attribute), 170
KeepOnClose (DwfDeviceParameter attribute), 168

L
LedBrightness (DwfDeviceParameter attribute), 168
Less (DwfAnalogInTriggerLengthCondition attribute),

174
limitationGet() (AnalogOut method), 73
limitationInfo() (AnalogOut method), 73
limitationSet() (AnalogOut method), 73
Low (DwfDigitalOutIdle attribute), 178
Low (DwfTriggerSource attribute), 172

206 Index

pydwf, Release 1.1.19

M
masterGet() (AnalogOut method), 70
masterSet() (AnalogOut method), 70
Measure (DwfAnalogIO attribute), 179
MinMax (DwfAnalogInFilter attribute), 173
mixedSet() (DigitalIn method), 116
modeGet() (AnalogImpedance method), 96
modeGet() (AnalogOut method), 72
modeSet() (AnalogImpedance method), 95
modeSet() (AnalogOut method), 72
modeSet() (ProtocolSPI method), 142
More (DwfAnalogInTriggerLengthCondition attribute),

174
msg (DwfLibraryError attribute), 162

N
nakSet() (ProtocolSWD method), 159
Network (DwfEnumFilter attribute), 166
nodeAmplitudeGet() (AnalogOut method), 77
nodeAmplitudeInfo() (AnalogOut method), 76
nodeAmplitudeSet() (AnalogOut method), 76
nodeDataInfo() (AnalogOut method), 79
nodeDataSet() (AnalogOut method), 80
nodeEnableGet() (AnalogOut method), 74
nodeEnableSet() (AnalogOut method), 74
nodeFrequencyGet() (AnalogOut method), 76
nodeFrequencyInfo() (AnalogOut method), 75
nodeFrequencySet() (AnalogOut method), 76
nodeFunctionGet() (AnalogOut method), 75
nodeFunctionInfo() (AnalogOut method), 75
nodeFunctionSet() (AnalogOut method), 75
nodeInfo() (AnalogOut method), 74
nodeOffsetGet() (AnalogOut method), 77
nodeOffsetInfo() (AnalogOut method), 77
nodeOffsetSet() (AnalogOut method), 77
nodePhaseGet() (AnalogOut method), 79
nodePhaseInfo() (AnalogOut method), 79
nodePhaseSet() (AnalogOut method), 79
nodePlayData() (AnalogOut method), 80
nodePlayStatus() (AnalogOut method), 80
nodeSymmetryGet() (AnalogOut method), 78
nodeSymmetryInfo() (AnalogOut method), 78
nodeSymmetrySet() (AnalogOut method), 78
NoErc (DwfErrorCode attribute), 165
Noise (DwfAnalogOutFunction attribute), 175
Noise (DwfDigitalInSampleMode attribute), 177
noiseSizeGet() (AnalogIn method), 45
noiseSizeInfo() (AnalogIn method), 44
noiseSizeSet() (AnalogIn method), 45
None_ (DwfTriggerSource attribute), 171
NotSupported (DwfErrorCode attribute), 165

O
Offset (DwfAnalogOutIdle attribute), 177
offsetGet() (AnalogImpedance method), 97
offsetGet() (AnalogOut method), 84
offsetInfo() (AnalogOut method), 84
offsetSet() (AnalogImpedance method), 97

offsetSet() (AnalogOut method), 84
OnClose (DwfDeviceParameter attribute), 168
open() (DeviceControl method), 21
OpenDrain (DwfDigitalOutOutput attribute), 177
openDwfDevice() (in module py-

dwf.utilities.open_dwf_device), 183
openEx() (DeviceControl method), 22
OpenSource (DwfDigitalOutOutput attribute), 177
orderSet() (ProtocolSPI method), 142
OtherInfoText (DwfEnumConfigInfo attribute), 166
outputEnableGet() (DigitalIO method), 133
outputEnableGet64() (DigitalIO method), 135
outputEnableInfo() (DigitalIO method), 132
outputEnableInfo64() (DigitalIO method), 135
outputEnableSet() (DigitalIO method), 133
outputEnableSet64() (DigitalIO method), 135
outputGet() (DigitalIO method), 134
outputGet() (DigitalOut method), 125
outputGet64() (DigitalIO method), 136
outputInfo() (DigitalIO method), 133
outputInfo() (DigitalOut method), 125
outputInfo64() (DigitalIO method), 136
outputSet() (DigitalIO method), 133
outputSet() (DigitalOut method), 125
outputSet64() (DigitalIO method), 136
Overs (DwfAcquisitionMode attribute), 173

P
ParallelCapacitance (DwfAnalogImpedance

attribute), 180
ParallelInductance (DwfAnalogImpedance at-

tribute), 180
paramGet() (DwfDevice method), 32
paramGet() (DwfLibrary method), 14
paramSet() (DwfDevice method), 32
paramSet() (DwfLibrary method), 13
paritySet() (ProtocolUART method), 138
parkSet() (ProtocolSWD method), 159
PC (DwfTriggerSource attribute), 171
periodGet() (AnalogImpedance method), 98
periodSet() (AnalogImpedance method), 98
phaseGet() (AnalogOut method), 86
phaseInfo() (AnalogOut method), 85
phaseSet() (AnalogOut method), 86
Play (DwfAnalogOutFunction attribute), 176
Play (DwfDigitalOutType attribute), 178
playData() (AnalogOut method), 87
playDataSet() (DigitalOut method), 130
PlayPattern (DwfAnalogOutFunction attribute), 176
playRateSet() (DigitalOut method), 130
playStatus() (AnalogOut method), 87
playUpdateSet() (DigitalOut method), 130
polaritySet() (ProtocolCAN method), 156
polaritySet() (ProtocolUART method), 139
Power (DwfAnalogIO attribute), 179
Prefill (DwfState attribute), 171
probeGet() (AnalogImpedance method), 97
probeSet() (AnalogImpedance method), 97

Index 207

pydwf, Release 1.1.19

ProtocolCAN (class in pydwf.core.api.protocol_can),
156

ProtocolI2C (class in pydwf.core.api.protocol_i2c),
152

ProtocolSPI (class in pydwf.core.api.protocol_spi),
141

ProtocolSWD (class in pydwf.core.api.protocol_swd),
158

ProtocolUART (class in py-
dwf.core.api.protocol_uart), 138

pullGet() (DigitalIO method), 134
pullInfo() (DigitalIO method), 134
pullSet() (DigitalIO method), 134
Pulse (DwfAnalogInTriggerType attribute), 174
Pulse (DwfAnalogOutFunction attribute), 175
Pulse (DwfDigitalOutType attribute), 178
PushPull (DwfDigitalOutOutput attribute), 177
PyDwfError (class in py-

dwf.core.auxiliary.exceptions), 162

Q
Quality (DwfAnalogImpedance attribute), 180

R
RampDown (DwfAnalogOutFunction attribute), 175
RampUp (DwfAnalogOutFunction attribute), 175
Random (DwfDigitalOutType attribute), 178
Range (DwfAnalogIO attribute), 179
rateSet() (ProtocolCAN method), 156
rateSet() (ProtocolI2C method), 153
rateSet() (ProtocolSWD method), 158
rateSet() (ProtocolUART method), 138
Reactance (DwfAnalogImpedance attribute), 179
read() (ProtocolI2C method), 154
read() (ProtocolSPI method), 144
read() (ProtocolSWD method), 160
read16() (ProtocolSPI method), 144
read32() (ProtocolSPI method), 145
readNakSet() (ProtocolI2C method), 153
readOne() (ProtocolSPI method), 144
Ready (DwfState attribute), 171
Record (DwfAcquisitionMode attribute), 173
recordLengthGet() (AnalogIn method), 43
recordLengthSet() (AnalogIn method), 43
Rectangular (DwfWindow attribute), 170
referenceGet() (AnalogImpedance method), 96
referenceSet() (AnalogImpedance method), 96
Remote (DwfEnumFilter attribute), 166
repeatGet() (AnalogOut method), 70
repeatGet() (DigitalOut method), 123
repeatInfo() (AnalogOut method), 69
repeatInfo() (DigitalOut method), 123
repeatSet() (AnalogOut method), 69
repeatSet() (DigitalOut method), 123
repeatStatus() (AnalogOut method), 70
repeatStatus() (DigitalOut method), 123
repeatTriggerGet() (AnalogOut method), 69
repeatTriggerGet() (DigitalOut method), 123

repeatTriggerSet() (AnalogOut method), 69
repeatTriggerSet() (DigitalOut method), 123
repetitionGet() (DigitalOut method), 129
repetitionInfo() (DigitalOut method), 129
repetitionSet() (DigitalOut method), 129
reset() (AnalogImpedance method), 95
reset() (AnalogIn method), 38
reset() (AnalogIO method), 90
reset() (AnalogOut method), 66
reset() (DigitalIn method), 104
reset() (DigitalIO method), 132
reset() (DigitalOut method), 120
reset() (DwfDevice method), 31
reset() (ProtocolCAN method), 156
reset() (ProtocolI2C method), 152
reset() (ProtocolSPI method), 141
reset() (ProtocolSWD method), 158
reset() (ProtocolUART method), 138
Resistance (DwfAnalogImpedance attribute), 179
Resistance (DwfAnalogIO attribute), 179
Resistance (DwfDmm attribute), 180
Rise (DwfTriggerSlope attribute), 172
ROM (DwfDigitalOutType attribute), 178
runGet() (AnalogOut method), 68
runGet() (DigitalOut method), 122
runInfo() (AnalogOut method), 68
runInfo() (DigitalOut method), 122
Running (DwfState attribute), 171
runSet() (AnalogOut method), 68
runSet() (DigitalOut method), 122
runStatus() (AnalogOut method), 68
runStatus() (DigitalOut method), 122
rx() (ProtocolCAN method), 157
rx() (ProtocolUART method), 139
rxSet() (ProtocolCAN method), 157
rxSet() (ProtocolUART method), 139

S
sampleFormatGet() (DigitalIn method), 109
sampleFormatSet() (DigitalIn method), 109
sampleModeGet() (DigitalIn method), 110
sampleModeInfo() (DigitalIn method), 110
sampleModeSet() (DigitalIn method), 110
sampleSensibleGet() (DigitalIn method), 111
sampleSensibleSet() (DigitalIn method), 111
samplingDelayGet() (AnalogIn method), 60
samplingDelaySet() (AnalogIn method), 59
samplingSlopeGet() (AnalogIn method), 59
samplingSlopeSet() (AnalogIn method), 59
samplingSourceGet() (AnalogIn method), 59
samplingSourceSet() (AnalogIn method), 59
ScanScreen (DwfAcquisitionMode attribute), 173
ScanShift (DwfAcquisitionMode attribute), 172
sclSet() (ProtocolI2C method), 154
sdaSet() (ProtocolI2C method), 154
select() (ProtocolSPI method), 142
selectSet() (ProtocolSPI method), 142
serialNumber() (DeviceEnumeration method), 18

208 Index

pydwf, Release 1.1.19

SeriesCapacitance (DwfAnalogImpedance at-
tribute), 180

SeriesInductance (DwfAnalogImpedance attribute),
180

Simple (DwfDigitalInSampleMode attribute), 177
Sine (DwfAnalogOutFunction attribute), 175
SinePower (DwfAnalogOutFunction attribute), 175
Single (DwfAcquisitionMode attribute), 172
Single1 (DwfAcquisitionMode attribute), 173
Slew (DwfAnalogIO attribute), 179
Spectrum (class in pydwf.core.api.spectrum), 23
spectrum (DwfLibrary attribute), 12
spi (DwfDevice.protocol attribute), 29
spyStart() (ProtocolI2C method), 155
spyStatus() (ProtocolI2C method), 155
Square (DwfAnalogOutFunction attribute), 175
State (DwfDigitalOutType attribute), 178
status() (AnalogImpedance method), 95
status() (AnalogIn method), 38
status() (AnalogIO method), 91
status() (AnalogOut method), 67
status() (DigitalIn method), 104
status() (DigitalIO method), 132
status() (DigitalOut method), 121
statusAutoTriggered() (AnalogIn method), 39
statusAutoTriggered() (DigitalIn method), 105
statusCompress() (DigitalIn method), 106
statusCompressed() (DigitalIn method), 107
statusCompressed2() (DigitalIn method), 107
statusData() (AnalogIn method), 40
statusData() (DigitalIn method), 106
statusData16() (AnalogIn method), 41
statusData2() (AnalogIn method), 41
statusData2() (DigitalIn method), 107
statusIndexWrite() (AnalogIn method), 40
statusIndexWrite() (DigitalIn method), 106
statusInput() (AnalogImpedance method), 99
statusMeasure() (AnalogImpedance method), 99
statusNoise() (AnalogIn method), 42
statusNoise2() (AnalogIn method), 42
statusNoise2() (DigitalIn method), 107
statusOutput() (DigitalOut method), 121
statusRecord() (AnalogIn method), 40
statusRecord() (DigitalIn method), 106
statusSample() (AnalogIn method), 39
statusSamplesLeft() (AnalogIn method), 39
statusSamplesLeft() (DigitalIn method), 105
statusSamplesValid() (AnalogIn method), 40
statusSamplesValid() (DigitalIn method), 106
statusTime() (AnalogIn method), 39
statusTime() (DigitalIn method), 105
statusWarning() (AnalogImpedance method), 99
stopSet() (ProtocolUART method), 139
stretchSet() (ProtocolI2C method), 153
Susceptance (DwfAnalogImpedance attribute), 179
swd (DwfDevice.protocol attribute), 29
symmetryGet() (AnalogOut method), 85
symmetryInfo() (AnalogOut method), 84

symmetrySet() (AnalogOut method), 85

T
Temperature (DwfAnalogIO attribute), 179
Temperature (DwfDmm attribute), 181
TempLimit (DwfDeviceParameter attribute), 170
ThreeState (DwfDigitalOutOutput attribute), 178
Time (DwfAnalogIO attribute), 179
Timeout (DwfAnalogInTriggerLengthCondition

attribute), 174
timeoutSet() (ProtocolI2C method), 153
TooltipText (DwfEnumConfigInfo attribute), 166
trailSet() (ProtocolSWD method), 159
transform() (Spectrum method), 24
Transition (DwfAnalogInTriggerType attribute), 174
Trapezium (DwfAnalogOutFunction attribute), 175
Triangle (DwfAnalogOutFunction attribute), 175
Triangular (DwfWindow attribute), 170
triggerAutoTimeoutGet() (AnalogIn method), 53
triggerAutoTimeoutGet() (DigitalIn method), 113
triggerAutoTimeoutInfo() (AnalogIn method), 53
triggerAutoTimeoutInfo() (DigitalIn method),

113
triggerAutoTimeoutSet() (AnalogIn method), 53
triggerAutoTimeoutSet() (DigitalIn method), 113
triggerChannelGet() (AnalogIn method), 55
triggerChannelInfo() (AnalogIn method), 55
triggerChannelSet() (AnalogIn method), 55
triggerConditionGet() (AnalogIn method), 57
triggerConditionInfo() (AnalogIn method), 57
triggerConditionSet() (AnalogIn method), 57
triggerCountSet() (DigitalIn method), 115
Triggered (DwfState attribute), 171
triggerFilterGet() (AnalogIn method), 56
triggerFilterInfo() (AnalogIn method), 55
triggerFilterSet() (AnalogIn method), 56
triggerForce() (AnalogIn method), 53
triggerGet() (DigitalIn method), 114
triggerGet() (DwfDevice method), 32
triggerHoldOffGet() (AnalogIn method), 54
triggerHoldOffInfo() (AnalogIn method), 54
triggerHoldOffSet() (AnalogIn method), 54
triggerHysteresisGet() (AnalogIn method), 57
triggerHysteresisInfo() (AnalogIn method), 56
triggerHysteresisSet() (AnalogIn method), 57
triggerInfo() (DigitalIn method), 114
triggerInfo() (DwfDevice method), 31
triggerLengthConditionGet() (AnalogIn method),

58
triggerLengthConditionInfo() (AnalogIn

method), 58
triggerLengthConditionSet() (AnalogIn method),

58
triggerLengthGet() (AnalogIn method), 58
triggerLengthInfo() (AnalogIn method), 58
triggerLengthSet() (AnalogIn method), 58
triggerLengthSet() (DigitalIn method), 115
triggerLevelGet() (AnalogIn method), 56

Index 209

pydwf, Release 1.1.19

triggerLevelInfo() (AnalogIn method), 56
triggerLevelSet() (AnalogIn method), 56
triggerMatchSet() (DigitalIn method), 115
triggerPC() (DwfDevice method), 32
triggerPositionGet() (AnalogIn method), 53
triggerPositionGet() (DigitalIn method), 113
triggerPositionInfo() (AnalogIn method), 52
triggerPositionInfo() (DigitalIn method), 113
triggerPositionSet() (AnalogIn method), 52
triggerPositionSet() (DigitalIn method), 113
triggerPositionStatus() (AnalogIn method), 53
triggerPrefillGet() (DigitalIn method), 111
triggerPrefillSet() (DigitalIn method), 111
triggerResetSet() (DigitalIn method), 114
triggerSet() (DigitalIn method), 114
triggerSet() (DwfDevice method), 31
triggerSlopeGet() (AnalogOut method), 71
triggerSlopeGet() (DigitalIn method), 112
triggerSlopeGet() (DigitalOut method), 124
triggerSlopeInfo() (DwfDevice method), 32
triggerSlopeSet() (AnalogOut method), 71
triggerSlopeSet() (DigitalIn method), 112
triggerSlopeSet() (DigitalOut method), 124
triggerSourceGet() (AnalogIn method), 52
triggerSourceGet() (AnalogOut method), 71
triggerSourceGet() (DigitalIn method), 112
triggerSourceGet() (DigitalOut method), 124
triggerSourceInfo() (AnalogIn method), 51
triggerSourceInfo() (AnalogOut method), 71
triggerSourceInfo() (DigitalIn method), 112
triggerSourceInfo() (DigitalOut method), 124
triggerSourceSet() (AnalogIn method), 52
triggerSourceSet() (AnalogOut method), 71
triggerSourceSet() (DigitalIn method), 112
triggerSourceSet() (DigitalOut method), 124
triggerTypeGet() (AnalogIn method), 55
triggerTypeInfo() (AnalogIn method), 54
triggerTypeSet() (AnalogIn method), 54
turnSet() (ProtocolSWD method), 158
tx() (ProtocolCAN method), 157
tx() (ProtocolUART method), 139
txSet() (ProtocolCAN method), 156
txSet() (ProtocolUART method), 139
Type (DwfEnumFilter attribute), 165
typeGet() (DigitalOut method), 126
typeInfo() (DigitalOut method), 125
typeSet() (DigitalOut method), 126

U
uart (DwfDevice.protocol attribute), 29
Undocumented (DwfAnalogIO attribute), 178
UnknownError (DwfErrorCode attribute), 165
USB (DwfEnumFilter attribute), 165
UsbLimit (DwfDeviceParameter attribute), 169
UsbPower (DwfDeviceParameter attribute), 168
userName() (DeviceEnumeration method), 17

V
Vimag (DwfAnalogImpedance attribute), 180
Voltage (DwfAnalogIO attribute), 179
Voltage (DwfAnalogOutMode attribute), 176
Vreal (DwfAnalogImpedance attribute), 180
Vrms (DwfAnalogImpedance attribute), 180

W
Wait (DwfState attribute), 171
waitGet() (AnalogOut method), 68
waitGet() (DigitalOut method), 122
waitInfo() (AnalogOut method), 67
waitInfo() (DigitalOut method), 121
waitSet() (AnalogOut method), 67
waitSet() (DigitalOut method), 121
Window (DwfAnalogInTriggerType attribute), 174
window() (Spectrum method), 23
write() (ProtocolI2C method), 154
write() (ProtocolSPI method), 145
write() (ProtocolSWD method), 159
write16() (ProtocolSPI method), 146
write32() (ProtocolSPI method), 146
writeOne() (ProtocolI2C method), 155
writeOne() (ProtocolSPI method), 146
writeRead() (ProtocolI2C method), 154
writeRead() (ProtocolSPI method), 143
writeRead16() (ProtocolSPI method), 143
writeRead32() (ProtocolSPI method), 143

Z
Zet (DwfDigitalOutIdle attribute), 178

210 Index

	Welcome to pydwf !
	Supported devices
	Dependencies
	Project hosting
	Installation using pip
	Documentation
	Examples
	Acknowledgements

	Overview of pydwf
	A minimal example of pydwf usage
	The two main pydwf classes

	The DwfLibrary class and its attributes
	The DwfLibrary class
	Using the DwfLibrary class
	DwfLibrary reference

	Device enumeration functionality
	Using the device enumeration functionality
	Alternatives to the device enumeration functionality
	DeviceEnumeration reference

	Device control functionality
	Using the device control functionality
	Alternatives to the device control functionality
	DeviceControl reference

	Signal processing functionality
	Using the signal processing functionality
	Spectrum reference

	The DwfDevice class and its attributes
	The DwfDevice class
	Using the DwfDevice class
	DwfDevice reference

	Analog input instrument
	Using the analog input instrument
	The AnalogIn state machine
	AnalogIn instrument API overview
	Instrument control
	Status variables
	Status data retrieval
	Acquisition settings
	Channel count
	Channel configuration
	Instrument trigger configuration
	Force instrument trigger
	Trigger detector configuration
	Counter functionality
	Sampling clock configuration

	AnalogIn reference

	Analog output instrument
	Using the analog output instrument
	The AnalogOut channel state machine
	AnalogOut channel nodes
	AnalogOut instrument API overview
	Instrument control
	Channel count
	Per-channel state machine settings
	Per-channel trigger configuration
	Per-channel output settings
	Per-channel miscellaneous settings
	Node enumeration
	Node configuration
	Node data management
	Carrier configuration (obsolete)
	Carrier node data management (obsolete)

	AnalogOut reference

	Analog I/O
	Using the Analog I/O functionality
	AnalogIO channels and nodes
	AnalogIO reference

	Analog impedance measurements
	Using the analog impedance measurements
	AnalogImpedance reference

	Digital input instrument
	Using the digital input instrument
	The DigitalIn instrument state machine
	DigitalIn instrument API overview
	Instrument control
	Status variables
	Status data retrieval
	Acquisition timing settings
	Acquisition settings
	Instrument trigger configuration
	Trigger detector configuration
	Counter functionality
	Miscellaneous settings

	DigitalIn reference

	Digital output instrument
	Using the digital output instrument
	The DigitalOut instrument state machine
	DigitalOut instrument API overview
	Instrument control
	Channel count
	Instrument-level state machine settings
	Trigger configuration
	Output settings
	Output pattern timing definition
	Data playback

	DigitalOut reference

	Digital I/O
	Using the digital I/O functionality
	DigitalIO reference

	UART protocol
	Using the UART protocol functionality
	ProtocolUART reference

	SPI protocol
	Using the SPI protocol functionality
	ProtocolSPI reference

	I2C protocol
	Using the I2C protocol functionality
	ProtocolI2C reference

	CAN protocol
	Using the CAN protocol functionality
	ProtocolCAN reference

	SWD protocol
	Using the SWD protocol functionality
	ProtocolSWD reference

	pydwf exceptions
	Using the pydwf exceptions
	Error handling in the pydwf package
	Exceptions raised by the pydwf package
	pydwf exceptions reference

	pydwf enumeration types
	Using the pydwf enumeration types
	pydwf enumeration classes reference

	pydwf utilities
	Using the pydwf.utilities functionality
	pydwf.utilities.openDwfDevice function reference

	Using pydwf as a command line tool
	Triggering explained
	Trigger sources
	Trigger timing and precision

	Device parameters
	Digilent Waveforms devices and their configurations
	About device configurations
	An overview of Digilent Waveforms devices
	Electronics Explorer (legacy)
	Analog Discovery (legacy)
	Analog Discovery 2
	Analog Discovery 3
	Digital Discovery
	Analog Discovery Studio
	DPS3340 Discovery USB power supply
	Analog Discovery Pro 3x50
	Analog Discovery Pro 5250

	About the DWF C Library
	Accessing the DWF library from Python
	Overview of the C API
	Error handling in the C API

	Example scripts
	Index

